
Danish Wind and Sun Energy 2017

Contents

Conclusion
Foreword
Main data Denmark 2016
World, Energy Consumption and Population 1990-2016
Danish Electricity Consumption (Load) 2017 13
Danish Thermal Electricity Production 2017 16
Danish Wind and Solar Power production19
Wind + Sun Power relative to load 23
Useful Wind and sun power 27
Danish Electricity Exchange with our Neighbours 2017
Exchange with Germany and Norway + Sweden
Wind Power and Exchange
Wind and Sun Power Variation per Hour, Day, Week and Month53
Storage of Wind energy
North Sea Cable
When Sweden Rejects Nuclear Power
Production data per Month
Sources

Conclusion

The author worked as production manager in an energy intensive chemical plant when Denmark as the first country in the World introduced a carbon dioxide tax in January 1992. He was then asked to be responsible for handling the problems this tax would give.

The one overwhelming problem was, that after a couple of years it became evident, that the production could not be kept in Denmark because of the steadily increasing energy taxes.

Therefore the production was transferred to Asia where the energy consumption per produced ton surely was higher than in Denmark. Thus the carbon dioxide tax was counterproductive and a lie.

In 1977 a large mob yelled before the Parliament, Christiansborg, in Copenhagen

What shall in Sun and Wind What shall väk (away) Barsebäck.

(A Swedish nuclear power plant 30 kms from Copenhagen.)

In 2008 the prime minister Anders Fogh Rasmussen promised us a "Fossil free Denmark in 2050."

This nonsense is now generally adopted as Denmark's energy policy. So you may wonder why the politicians and the rest of the talking establishment are so fond of the term of abuse, **populism**, when talking about persons who do not agree with them.

In the first section of this report it is shown how small a part of our energy consumption is supplied by the wind power, about 7%.

Thereafter follow some data of the World's population growth and energy consumption, showing which small role "sustainable energy" plays.

In the section **"Wind + Sun Power relative to load"** it is shown that wind and sun power impossibly can deliver the electricity we need. We must have back up. Full back up, at an undisclosed but high cost. So possibly you can produce wind power at a very low cost under some circumstances but you have to pay for the back up costs too.

In the section "**Useful Wind and Sun Power**" it is shown that some of the produced electricity must be exported, so when it is claimed that the wind power delivered about 44% of our electricity in 2017 it is simply not true. After correction for export the figure falls to about 38%.

The next sections show how dependent we are of exchange of electricity with our Scandinavian neighbours, and how small the exchange is with Germany.

Germany produces a lot of wind power too, mainly at the same time as Denmark, so there is little basis for mutual support.

In the section **"Wind and Sun Power variation per Week"** it is shown that there is a high degree of simultaneousness for wind power in Germany, France and England. So even strong European grids can't smoothen out the variations in the wind energy.

"Storage of Wind Energy" deals with this impossible idea, and shows that not even Elon Musk has a useful concept. However, batteries may play an important role in regulating short time variations.

The idea of building a **North Sea Cable** between Denmark and England, seems to be a very bad idea. But it may be useful for those investing in new off shore parks to produce electricity without having a market for it.

It has been shown that we are very dependent on exchange with Norway and Sweden. If Sweden chooses to **phase out nuclear power** and replace it by wind power the Swedish demand for regulatory power from hydro power will increase dramatically probably leaving no resources to smoothen out the uncontrollably varying Danish wind power and thus be a catastrophe for Denmark

Prime minister Anders Fogh Rasmussen in 2008:

We shall create a Fossil free Denmark.

Foreword

The author Chemical Engineer, M.Sc. Sören Kjärsgaard Ludvig Holbergsvej 16, DK 8500 Grenaa Telf. +0045 2015 4496// +0045 8632 0760, and mail SHK@post.tele.dk

is retired since more than 10 years and has neither any obligations to anybody nor any economic interests in energy production or distribution, so the views expressed in this report are fully his own.

Sources

The main source for this report giving data every hour for production, consumption (load) import, export and many others was

http://osp.energinet.dk/ layouts/Markedsdata/framework/integrations/markedsdatatemplate.as px

Numbers.

Decimal division is indicated by a , and not a . The . (point) is used to separate large numbers thus making them more readable. Example: 1 million is written as 1.000.000 and a quarter as 0,25.

Units.

Generally there exists a severe confusion about **Energy** and **Effect**.

Energy is measured in J(oule) and **Effect in joule per a unit of time.** If the time is a second the unit is named **W(att)** which is defined as **joule/second**.

Most statistics indicate a country's energy consumption as **PJ/year**, (10^15 Joule), or **TJ/year**. 1 PJ roughly corresponds to 25.000 tons of oil and a **TJ** to 25 mio tons oil.

PJ is an **Energy unit**. **PJ/Year** is **energy/time** i.e. an **Effect unit**, like **Watt**. So you can divide **PJ/year** with the **number of seconds per year** (31.536.000 in a normal year and 31.622.400 in a leap year) to obtain the Consumption in **Watt**. The author prefers to use this unit where possible, because electric effect and capacity always is expressed in watt.

(The wind power industry generally prefers to express the production in MWh or GWh per year, to hide the discrepancy between nominal capacity and production.)

Prefixes	i		
Kilo	k	1000	10^3
Mega	Μ	1.000.000	10^6
Giga	G	1.000.000.000	10^9
Tera	Т	1.000.000.000.000	10^12
Peta	Р	1.000.000.000.000.000	10^15
Exa	E	1.000.000.000.000.000.000	10^18

Main data Denmark 2016

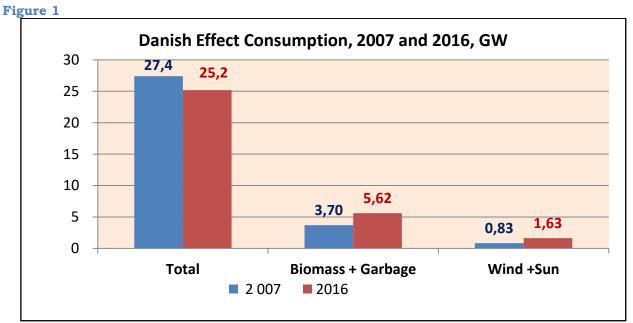
Average Effect Consumption

25,2 GW

It is not normal to express a country's energy consumption in WATT, i.e. *Joule Per Second* The Danish energy consumption in 2016 was 797 PJ.

797 PJ/year expresses an energy consumption in a certain time and thus the real **dimension** is **EFFECT.**

So we can transfer **joule/year** to **watt by dividing** by the number of seconds in 2016, i.e. 31.622.400 and we get the figure 25,2 GW.


Then it becomes easy to compare with the generation of electricity.

The Danish electricity consumption is about 4 GW, and the wind power yielded on average about 1,5 GW. **About 6%** of the total energy or effect consumption

The total Danish effect consumption corresponds to ca. 630 kg oil/second i.e. ca. 20 Mio tons of oil per year

Wind Power average	1.5	GW
Wind Power minus export average	1.2	GW
Electricity load average	3.9	GW
Wind Power Capacity end of year	4,9	GW
Wind Power % of total effect consumption	6	%
Wind Power % of electric load	38	%
After Correction for export Wind Power % of total effect consumption Wind Power % of electric load Wind Power relative to installed generation capacity	4,9 32 30	% % %
Wind Power relative to installed generation capacity Sources ⁱ	30	%

So there is a long way, a very long way to the "fossil free society."

The energy or effect consumption fell, the wind power was doubled but imported biomass and imported garbage, e.g. from London, increased much more. We are even paid for burning outlandish garbage. Some politicians talk about a "garbage free" society, so burning of foreign garbage will hardly be considered "sustainable".

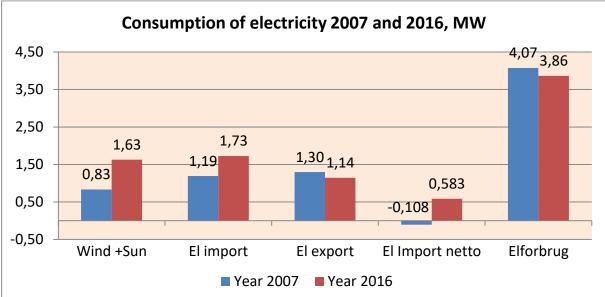


Figure 2

Figure 2 shows that wind and sun power was nearly doubled in the years from 2007 to 2016, but it shows too that the import of electricity increased and that the consumption fell. (*Elforbrug means Electricity consumption*)

Burning of fossil or non fossil fuels will always imply some pollution. Wind and sun power are not polluting – in principle - so if you are obsessed with cleanliness, you must get your energy from wind, sun and hydro power. This energy only exists in the form of electricity.

Luckily the Wind Power lobby informs us, that wind power is clean, cheap and plentiful. Therefore you may wonder why the consumption of electricity is declining. It ought to be increasing. If not we will never ever obtain a "fossil free society."

Sören Kjärsgård February 2017

World, Energy Consumption and Population 1990-2016

Sourcesⁱⁱ,ⁱⁱⁱ

Conclusions:

It is not true that the increase in the World population is slowing down. On the contrary the yearly increase in the last 26 years has varied between 89 and 77 million with a standard deviation of 3,0 million/year and no difference between start and end of the period.

The increase in effect consumption varies between 755 GW and -199 GW per year with a mean value of on average **197 GW** per year. Ca. 4 times the Swedish effect consumption and about 8 times the Danish effect consumption, Total consumption, not just consumption of electricity.

For Comparison the **production** of energy or more correctly expressed **effect** from (**wind + sun + geothermal + biomass + other**) was **160** GW, **185** GW and **212** GW in 2014, 2015 and 2016, which should be compared with an average increase in the consumption of **262** GW/year in the period 1990-2016.

The population growth is on average 82 million per year, and the **effect** consumption is on average 2,16 kW per capita. That alone gives an increase in the effect consumption of 177 GW/year.

Increasing standards of living necessarily increases the effect consumption per capita.

Remembering that the World effect consumption is about **17.000** GW, it becomes very very difficult to see how the use of fossil fuels should decline.

 *										
Variation in increase of consumption of Effect and Population, 1990-2016										
		Average	Max	Min	Stddev					
Increase Effect Consumption	GW/Year	262	755	-199	197					
Population Growth	Million	82	89	77	3,0					
Effect per Capita	kW	2,16	2,38	1,98	0,16					

Table 1

Table 2 below shows the World's energy consumption in the units:

Mtoe, (million ton oil equivalent),

EJ (Exajoule = 10^{18} Joule),

Table 2

TWh (Tera watt hours). For comparison the Danish electricity consumption is around 33 TWh/year, and the Swedish hydro power magazines contain when full a hydro energy corresponding to 33-34 TWh.

GW (Giga Watt = 10^{9} joule/second). The Swedish Nuclear power plants yield about 9 GW in the winter months, and the total Swedish electricity consumption is on average about 17 GW. The total Danish energy consumption or more correct effect consumption is about 24 GW. The average electric load (consumption) is a little less than 4 GW.

Table 2		World E	nergy Co	nsumpti	on 2014	-2016 a	ccording	g to BP	Statisti	CS	
Year		Oil	Natural Gas	Coal	Biofuel	Nu- clear	Hydro	Solar	Wind	Geo- thermal, Biomass Other	Sum
	Mtoe	4.252	3.082	3.911	80	219	334	17	61	43	11.997
	EJ	178	129	164	3	9	13,99	0,71	2,55	1,79	502
	TWh	49.446	35.838	45.487	927	2.541	3.886	196	709	497	139.528
2014	GW	5640	4088	5189	106	290	443,28	22,4	80,9	56,6	15.916
	% of total	35,44	25,69	32,60	0,66	1,82	2,79	0,14	0,51	0,36	100
	Capacity	GW						177	353		
	Yield	% of Ca	apacity					12,6	22,9		
	Mtoe	3204	3135	3840	80	221	336	22	71	46	12.083
	EJ	181	131	161	246	9	14,05	0,92	2,98	1,93	748
	TWh	50.373	36.462	44.658	68.224	2.575	3.903	256	828	536	207.816
2015	GW	5746	4159	5094	106	294	445	29,2	94,5	61,2	16.029
	% of total	35,85	25,95	31,78	0,66	1,83	2,78	0,18	0,59	0,38	100
	Capacity	G	W					226	419		
	Yield	% of Ca	apacity					12,9	22,6		
	Mtoe	4418	3204	3732	80	225	346	29	83	48	12.164
	EJ	185	134	156	3	9	14,48	1,20	3,45	2,02	509
	TWh	51.384	37.264	43.403	927	2.617	4.023	333	960	562	141.472
2016	GW	5861	4251	4951	106	727	458,89	38,0	109,5	64,1	16.566
	% of	26.22	26.24	20.00	0.00	1 05	2.04	0.24	0.00	0.40	100
	total	36,32 G	26,34	30,68	0,66	1,85	2,84	0,24	0,68	0,40	100
	Capacity							301	69 22.2		
	Yield	% of Ca	apacity					12,6	23,3		

The watchful reader might say, that the units used are incomparable since GW is an effect unit i.e. energy/time (Joules per second) whereas the other units are energy units. But actually Mtoe, EJ, TWh as shown in the table are effect units too because they mean **consumption/year**.

Oil, Gas and Coal % of Consumption											
Year	ear Oil Natural Coal										
2014	35	26	33	93 <i>,</i> 7							
2015	36	26	32	93 <i>,</i> 6							
2016	36 <i>,</i> 3	26,3	30,7	93 <i>,</i> 3							

Figure 3

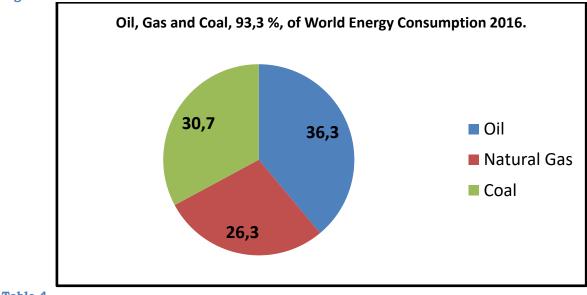
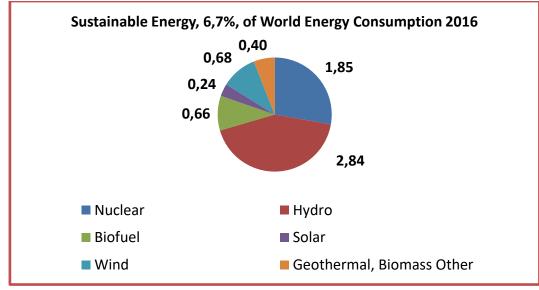



Table 4

	Renewables plus Nuclear % of consumption											
Year Nuclear Hydro Biofuel Solar Wind Biomass Su Other												
2014	1,82	2,79	0,66	0,14	0,51	0,36	6,28					
2015	1,83	2,78	0,66	0,18	0,59	0,38	6,42					
2016	1,85	2,84	0,66	0,24	0,68	0,40	6,66					

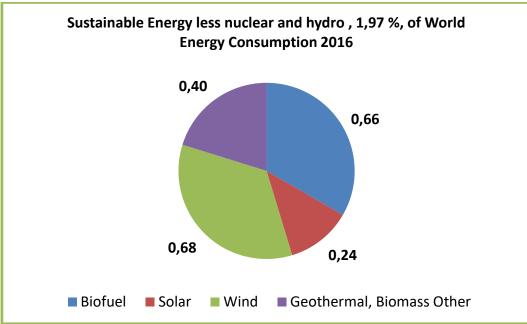


Table 5

"Green Energy" % of Consumption										
Year	Biofuel	Solar	Wind	Geothermal, Biomass Other	Sum					
2014	0,66	0,14	0,51	0,36	1,67					
2015	0,66	0,18	0,59	0,38	1,81					
2016	0,66	0,24	0,68	0,40	1,97					

Figure 5

Tabel 6

World Population and Energy Consumption										
	Year	1990	1995	2000	2005	2010	2013	2014	2015	2016
Effect World	TW	10,8	11,4	12,4	14,5	16,2	17,1	17,2	17,4	17,6
Sun, Wind, Bio, Geothermal	TW	0,01	0,02	0,02	0,04	0,09	0,14	0,16	0,19	0,21
Population	Mio	5310	5735	6127	6520	6930	7182	7266	7349	7433
Population Growth	Mio/year	89	80	78	81	84	84	84	84	84
Effect per Capita	kW	2,04	1,99	2,03	2,23	2,33	2,38	2,37	2,37	2,36

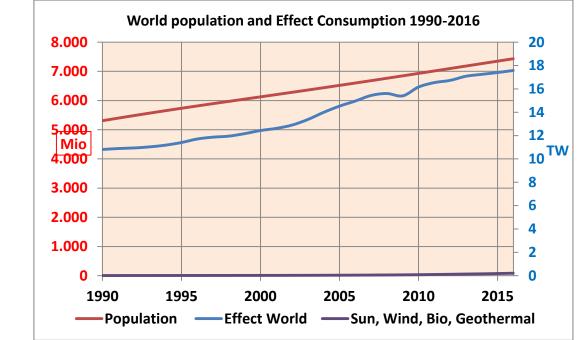


Figure 7 Increase of World Population, mio/year, 1990-2016 Mio

Danish Electricity Consumption (Load) 2017

Sources: All the data in this and the following sections are obtained from http://osp.energinet.dk/layouts/Markedsdata/framework/integrations/markedsdatatemplate.as

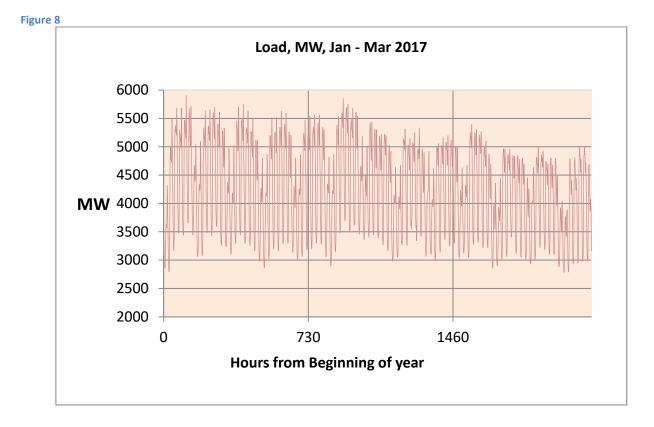
There is nothing special about the Danish Electricity consumption. The figures for 2017 are shown in table 6:

Table 7

Load MW, 2017										
2017 Jan-Mar Apr-Jun Jul-Sep Oct-Dec										
Average	3887	4234	3628	3540	4150					
Max	5982	5905	5081	5786	5982					
Min	1810	2784	2359	1810	2553					
Stddev	780	764	637	682	777					
Observations	8760	2160	2184	2208	2208					

(The term "observations" used throughout this report means the number of figures behind the average etc. There was 8760 hours in 2017 and the data base gives a value for each hour)

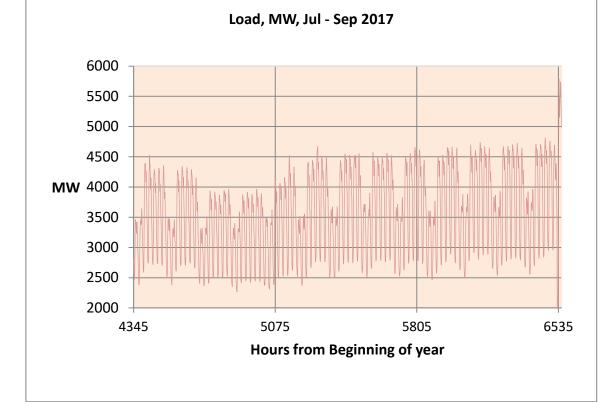
However it is remarkable that the consumption is constant or nearly constant, as shown in table 8. The only way to obtain zero carbon dioxide emission is a massive increase in the consumption of "green" electricity. We are even told again and again that wind energy is cheap and plentiful. So why is the consumption not increasing?

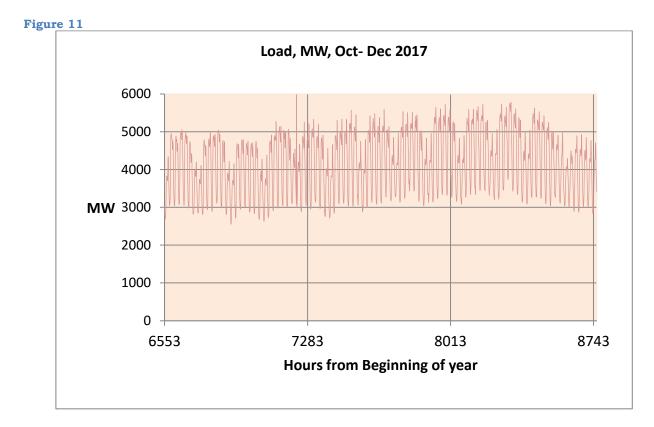

Table 8

Danish Load, MW Average,							
in 2015, 2016 and 2017							
2015	3826						
2016	3862						
2017	3887						
	-						

The Danish electricity consumption per capita is comparable with the German, but not the Swedish.

Table 9 Electricity consumption and Carbon Dioxide Emission per Capita, DE, S, Fand DK Country Population Per Capita Carbon Dioxide Emission Average Load GW Mio kW Mio Ton Ton per capita Year 2016 1990 2015 2015/16 1990 2016 1990 2015/16 54,8 Germany 78,9 80,7 0,679 1.003 775,7 12,71 9,61 Sweden 9,78 17,4 8,56 1.775 56.7 44.7 6.62 4,57 Denmark 5,14 3,86 5,67 0,681 53,0 10,31 6,70 38,0 France 54.4 64.4 0.845 331.5 5,15


Conclusions: Nuclear Power and a high use of electricity per capita is a condition for low carbon dioxide emissions.



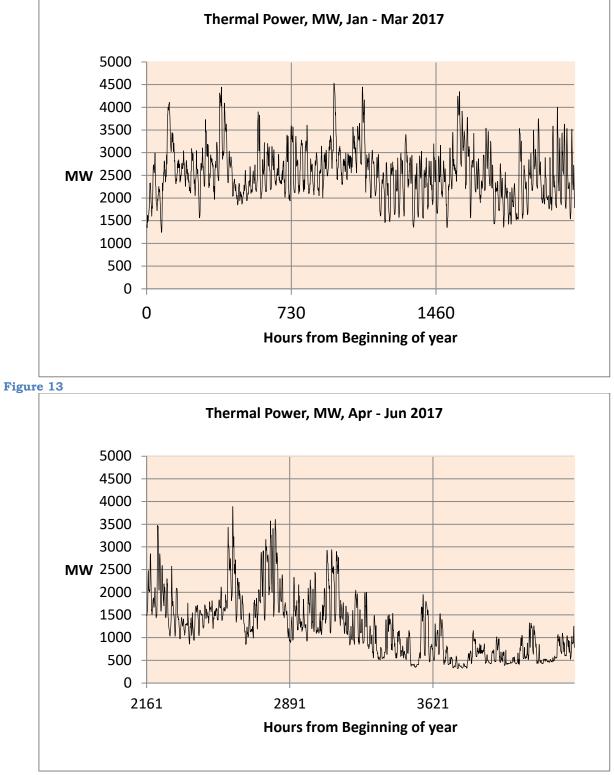
Danish Thermal Electricity Production 2017

The data for 2017 are shown in table 9 below:

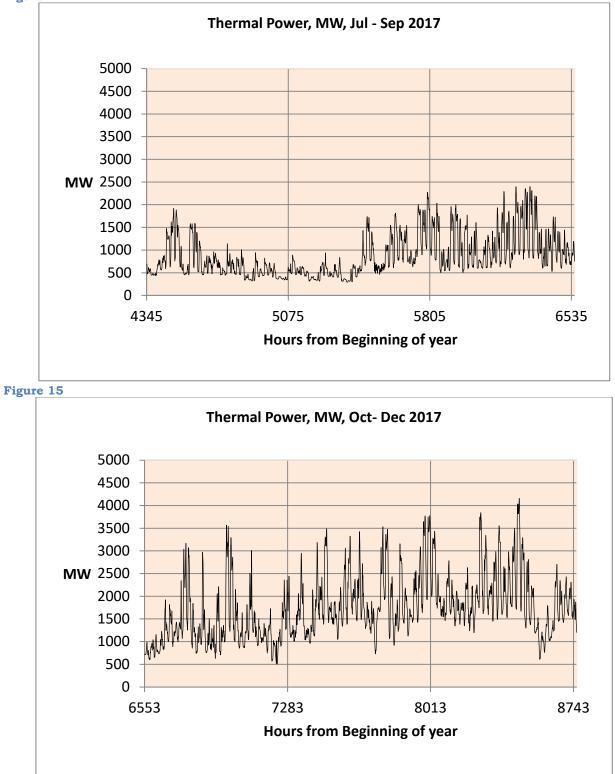
Tabel 10

Thermal Power, MW, 2017										
	2017	Jan Mar	Apr-Jun	Jul-Sep	Oct-Dec					
Average	1586	2541	1214	873	1734					
Max	4530	4530	3891	2399	4161					
Min	293	1242	320	293	507					
Stddev	872	564	669	460	701					
Observations	8760	2160	2184	2208	2208					

It is seen that the thermal power stations have yielded between 293 MW and 4530 MW with an average of 1549 MW. The average is a third of the maximal ouput. **I.e. we have very low utilization of the power stations.**


The capacity of the transmission lines from our neighbours is not less than 6200 MW and the maximal load in 2017 was 5982 MW, so you may wonder why we need a thermal power capacity of not less than 4530 MW, when they on average produce only 1549 MW.

And you may wonder too what it costs to maintain this back-up capacity.

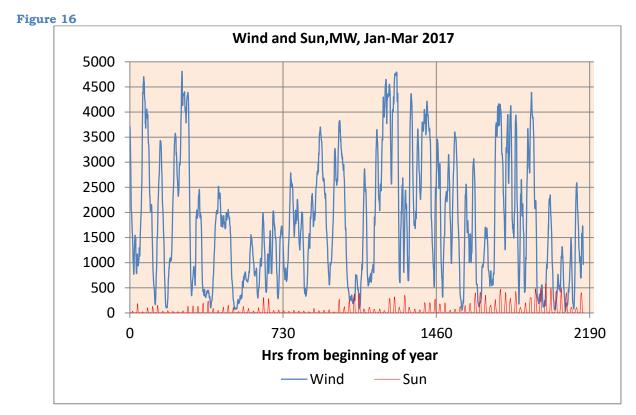

The graphs 13-16 below illustrate the very fluctuating operation of our thermal power stations.

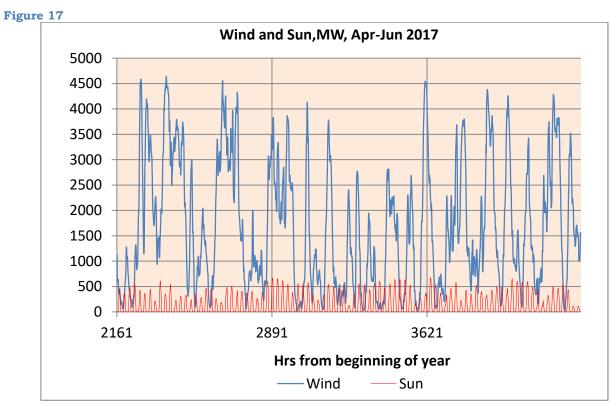
Everybody who has been responsible for operating a complicated production plant will know, that a production varying as shown will be very uneconomic.

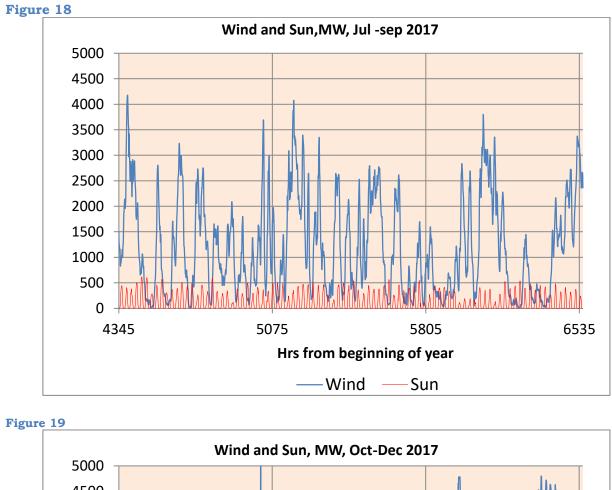
Danish Wind and Solar Power production

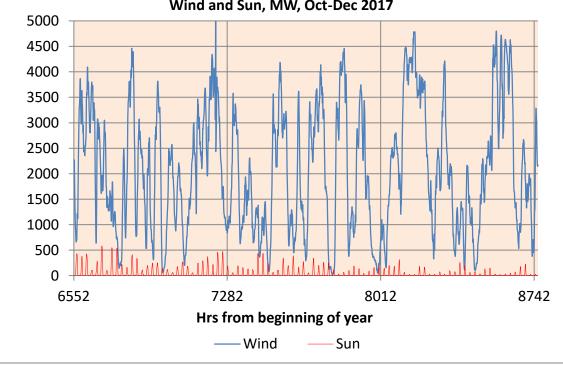
2017 Jan Mar Apr-Jun Jul-Sep Oct-De									
Wind, MW									
Average	1687	1800	1678	1206	2067				
Max	5487	4812	4639	4177	5487				
Min	3	31	12	3	21				
Stddev	1212	1236	1253	953	1219				
Observations	8760	2160	2184	2208	2208				
		Sun, M	W						
Average	90	43	150	127	40				
Max	673	586	673	617	584				
Min	0	0	0	0	0				
Stddev	145	92	181	157	88				
Observations	8760	2160	2184	2208	2208				
		Wind+Sun,	MW						
Average	1777	1843	1829	1333	2107				
Max	5487	5031	4880	4440	5487				
Min	11	53	26	11	21				
Stddev	1214	1239	1273	977	1217				
Observations	8760	2160	2184	2208	2208				

Table 11


The figures 16-19 illustrate the well known fact that wind and solar power fluctuates, from nearly zero to close to the installed capacity. It is no surprise that there is no solar power during the nights, but it may be surprising that our 5000-6000 wind turbines spread over a distance of 400 km from north to south and 400 km from east to west sometimes produce nothing or nearly nothing.


The average wind power in 2015, 2016 and 2017 was **1612 MW**, **1452 MW and 1687 MW**.


Table 12


Wind On Shore and Off Shore 2017								
On shore Off shore Total								
Average MW	1096	592	1687					
Max MW	5005	1227	5487					
Min MW	1	0	4					
Stddev MW	874	374	1212					
Stddev % of average	79,7	63,2	71,8					

The on shore production is slightly more variable than the off shore production, however, as shown in the following graphs the off shore production frequently approaches zero just as well as the on shore production.

Figure 20

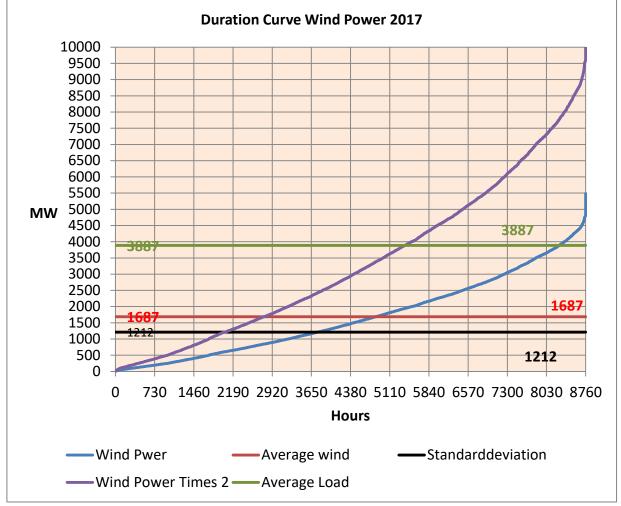


Figure 20 may need a little explanation.

The green line shows the average power consumption, 3887 MW.

The red line the average wind power, 1687 MW

The black line shows the standard deviation for the wind power, 1212 MW.

The abscissae is divided in 730 hours, the average number of hours per month.

Thus the **blue** curve shows for instance that the wind power in 730 hours was less than 200 MW, in 1460 hours less than 450 MW and in half of the year less than 1500 MW. And in about 450 hours higher than the average demand.

The **violet** curve shows the **conditions by doubling the wind power**. There would still be 5200 hours where the wind production is lower than the load and 3560 hours where the wind production is higher than the load. And about 2900 hours where the wind power is less than half of the load.

The only known and thinkable method to store large amounts of electricity is to behold the water in hydroelectric reservoirs. The Scandinavian reservoirs have a nominal capacity of about 120 TWh, or about 14 GWYear. They would surely be large enough to supply back up to the Danish system with a consumption of 3,8 GW on average. However, they are not created to satisfy the Danes only.

Wind + Sun Power relative to load

Table 13

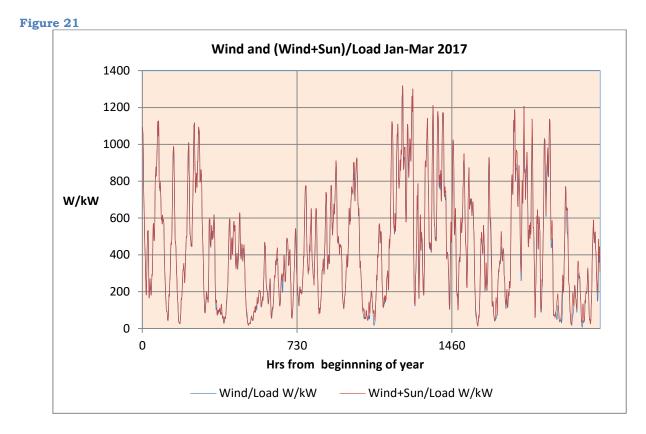
Table 14

(Wind+Sun)/Load W/kW								
2017	Jan-Dec	Jan Mar	Apri-Jun	Jul-Sep	Oct-Dec			
Average	462	435	504	377	508			
Max	1811	1318	1368	1811	1388			
Min	4	13	9	4	4			
Stddev	312	299	338	284	306			
Observations	8760	2160	2184	2208	2208			

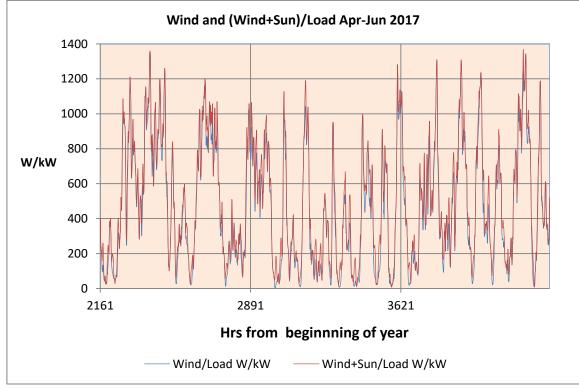
Table 13 shows how large a part of the load is covered by wind and sun power in 2017. The unit is Watt/kW, i.e. promille.

The average is 462 Watt/kW in the period Jan-Dec. This means that on average 462 watt is supplied for each kW or 1000 Watt consumed, so that you could say that wind + sun delivers 46.2 % of the load.

However, if you look at the next line you find the max values. These sometimes surpass 1000 W/kW so that more wind- and sun power is produced than the consumers use. Then the average figure of 46,2% wind and sun power in the system becomes meaningless.

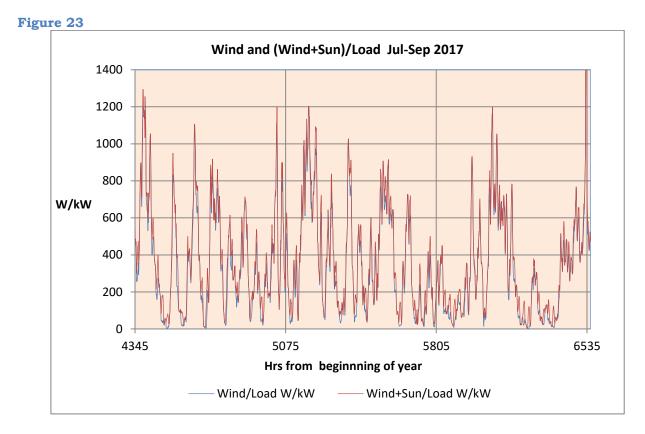

So if you at any time subtract the net export from the wind and sun power produced you find the useful wind + sun power is 1512 MW. According to table 15 you find that wind and sun have supplied 389 W/kW Load or **38,9%**.

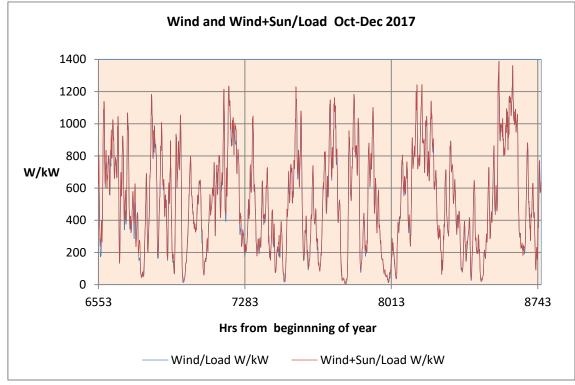
Useful Wind +Sun 2017						
Wind+Sun Average	MW	1777				
Useful Wind + Sun Power	MW	1512				
Proportion useful	W/kW	851				
Load average	MW	3887				
Real wind + sun proportion	W/kW	389				

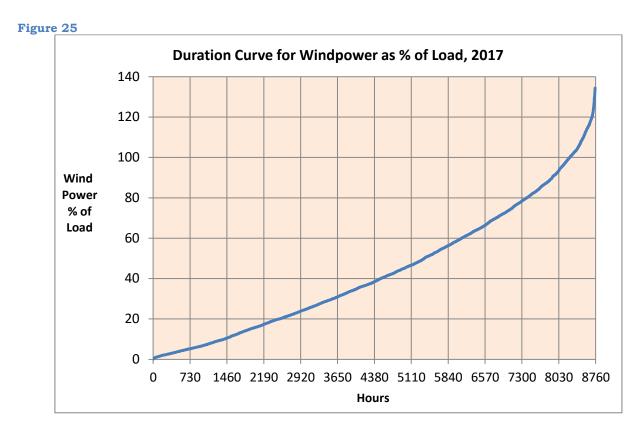

It is easy to see that wind and solar power can't stand alone.

The graphs fig. 21-24 below are showing variations in the relation between (wind+solar power) and the load or consumption. They clearly illustrate how impossible it is to supply the needed electricity by wind and sun power.

The unit is watt/kW. If you wish to transfer the figure to % just divide by 10.






In the ideal world the blue curve would be a straight line with the value 1000 watts produced per kW consumed.

You can hardly see more than one curve. This indicates that the sun power contribution is very low. But that may change.

It is seen that the wind power is less than 20% of the load in 2550 hours and higher than the load in 500 hours.

So wind power demands back-up.

Useful Wind and sun power

If we subtract the net export from the wind and sun power we obtain the wind and sun power used in Denmark. We name this part the **useful sun and wind power**.

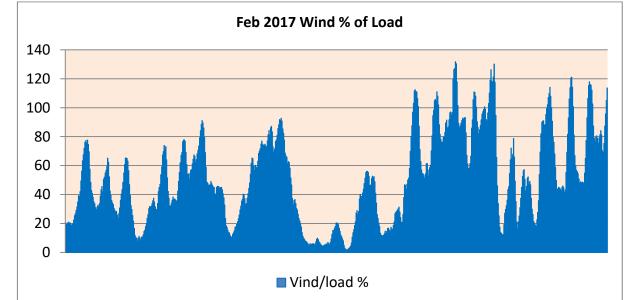
2017	Jan-Dec	Jan Mar	Apri-Jun	Jul-Sep	Oct-Dec				
Useful Wind MW									
Average	1422	1382	1382	1169	1382				
Max	4962	3489	3830	3573	4962				
Min	3	31	12	3	21				
Stddev	906	718	946	889	931				
Observations	8760	2160	2184	2208	2208				
	Use	eful Wind +	Sun MW						
Average	1512	1479	1479	1296	1479				
Max	4962	3489	4039	3819	4962				
Min	11	53	26	11	21				
Stddev	917	721	974	915	934				
Observations	8760	2160	2184	2208	2208				

Table 15 shows the amount of useful Wind and Sun power and the variation in these. You see that the system must be able to handle a variation between 4962 MW useful input and down to 11 MW.

The wind + sun effect and the proportion of the load is shown in table 16 hereunder.

Table 16

Table 15


2017	Jan-Dec	Jan- Mar	Apr–Jun	Jul-Sep	Oct-Dec				
Average Wind + Sun Power, MW									
Wind	1687	1800	1678	1206	2067				
Sun	90	43	150	127	40				
Wind+Sun	1777	1843	1829	1333	2107				
	Average useful W/kW produced								
Wind	843	768	823	969	669				
Sun+ Wind	851	803	809	972	702				

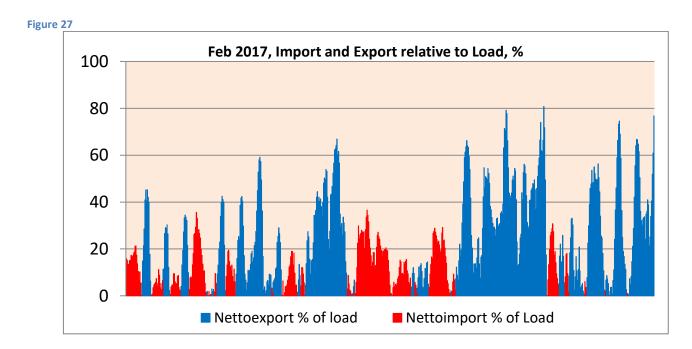

It is seen that the lowest proportion of useful wind + sun power is obtained in the months October-December.

Table 17

Load, Wind Power and Exchange in February 2017							
February	Load	Wind	Exchange	Wind %	Import %	Export %	
2017	MW	MW	MW	of load	of Load	of load	
Average	4325	2183	-506	50	5	17	
Max	5852	4795	1989	132	37	81	
Min	2895	84	-2823	2	0	0	
Stddev	751	1256	1076	31	8	21	
Observations	672	672	672	672	672	672	

Figure 26

It is very easy to see that in the cold and windy month of February we export a large part of the wind power. The wind power was on average 2183 MW and 506 MW was **ex**ported.

Table 18

Load, Wind Power and Exchange in May 2017								
May 2017	Load	Wind	Exchange	Wind %	Import %	Export %		
May 2017	MW	MW	MW	of load	of Load	of load		
Average	3592	1364	843	38	426	285		
Max	4744	4545	2894	128	1281	799		
Min	2415	12	-2119	0	9	0		
Stddev	642	1177	1096	32	324	234		
Observations	744	744	744	744	744	744		

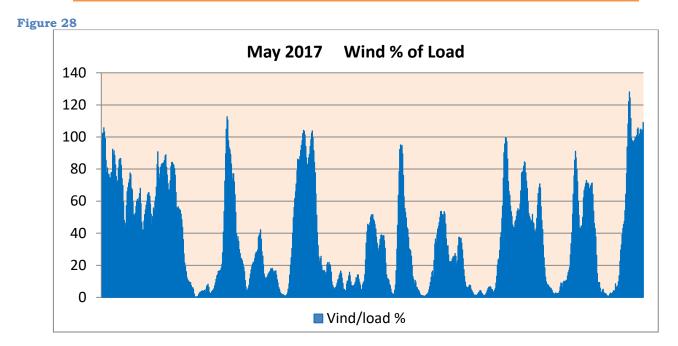
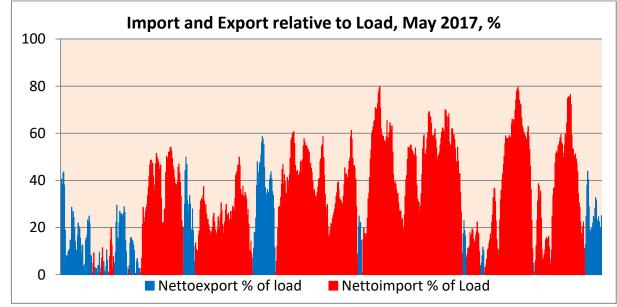



Figure 29

May is very different from February. The wind power was on average 1364 MW and the **im**port on average 843 MW.

The difference in im- and export between February and May can only be possible as long as you have neighbours who don't rely on wind power-

Figure 29 shows how the usefulness of wind and sun power depends of the effect produced.

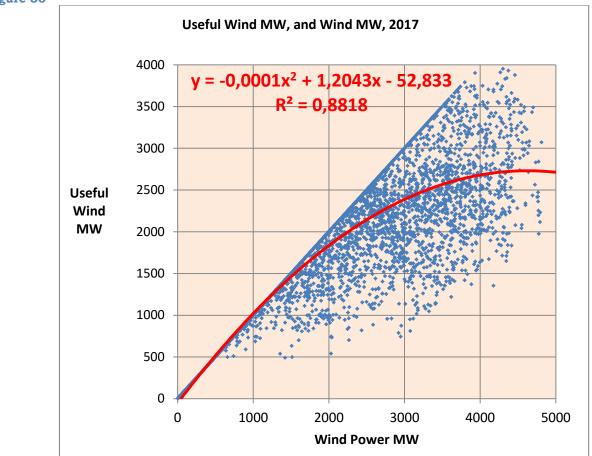


Figure 30

Every point in the above graph represents a measurement of wind+ sun power and a calculation of how much wind and sun power is left after subtraction of the simultaneous net export. For example the point x=2000 and Y=500 means that 2000 MW wind + sun power was produced, but only 500 MW was useful and thus 1500 MW must have been exported. The graph illustrates that there is nearly no export when the wind + sun power is less than 2000 MW, but when the output increases to 3000 MW on average only 2500 MW is used in Denmark. By 4000 MW production and higher on average about 2800 MW is used in Denmark.

So until we have improved our ability to use large amounts of fluctuating electric power it does not seem to make much sense to build new wind turbines or solar cells.

Therefore it is proposed to build a cable to England to handle the extra wind power from the planned 1350 MW large off shore wind parks. Extra cost about 180 million €. But wind power becomes ever cheaper!

Danish Electricity Exchange with our Neighbours 2017

To overcome the problem with the varying (wind and sun) power, import and export necessarily plays a crucial role in the Danish electric system. This is shown in the table and graphs below. The import is on average 157 W/kW load or 15,7% of the consumption. But the variation is considerable. In the extreme case Denmark exported 1216 watt/kW consumed and imported up to 816 watt/kW used or expressed as per cent **121,6 % and 81,6%**.

It is unimaginable that a larger country could do the same.

Therefore bigger countries could not follow in Denmark's footsteps in building wind and sun power. The graphs below illustrate the dependency of the foreign exchange.

Table 19

Exchange/Load W/kW								
2017	Jan-Dec	Jan	Apr-Jun	Jul-Sep	Oct-			
		Mar			Dec			
Average	142	-35	162	377	74			
Max	816	429	799	816	553			
Min	-1216	-808	-768	-1216	-756			
Stddev	312	255	321	255	241			
Observations	8760	2160	2184	2208	2208			

Please observe that import is positive and export negative in the following graphs.

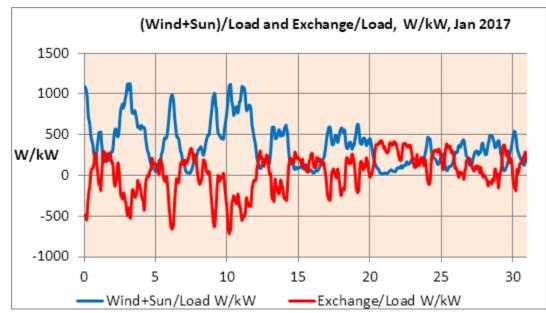
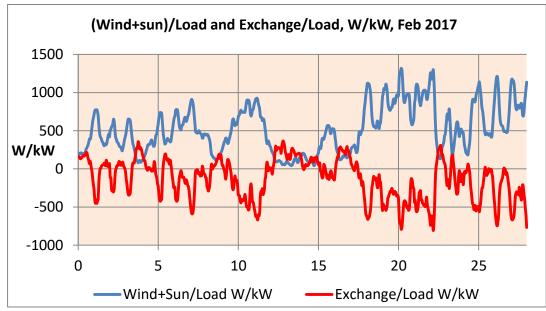
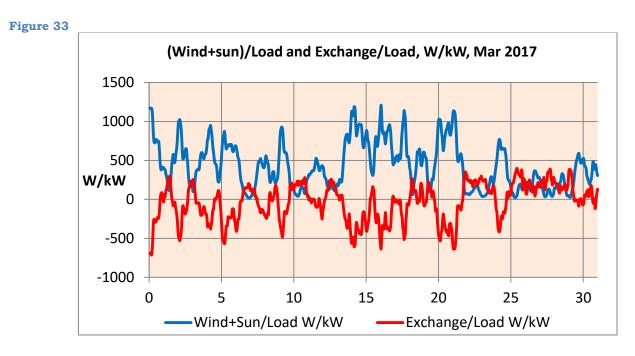
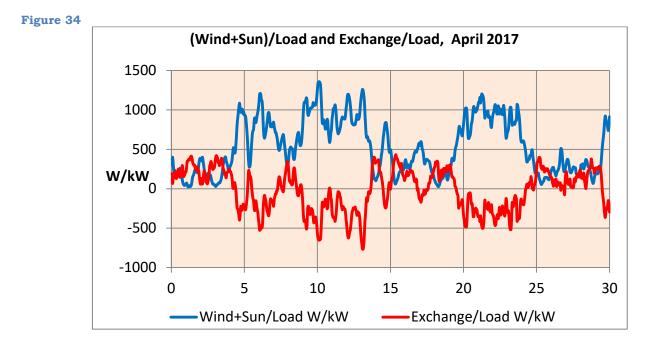
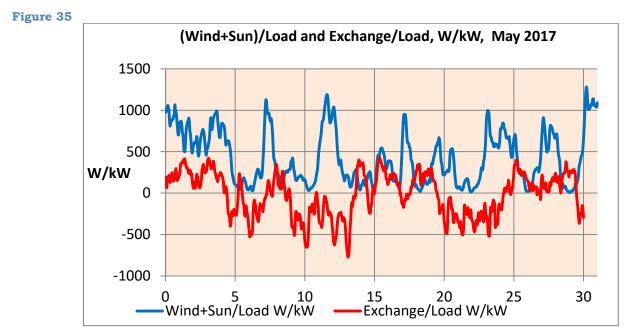
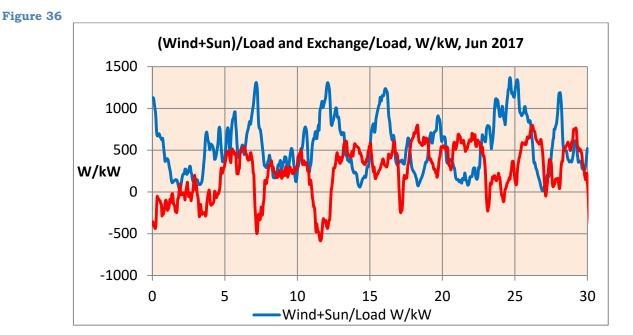




Figure 31 shows very clearly that electricity is exported, when it blows and vice versa.


Figure 32


The relation between wind power and export is very clear. But there is not much import in February. The power stations have to produce heat for district heating and then they produce electricity too.


Essentially the same condition as in February

It is very easy to see, the interdependence of export/import and wind power in April. For instance on April 13 the wind power reaches 1300 W/kW load and the export at the same time 750 W/kW load. I.e. in this case less than half of the wind power is used in Denmark.

In some cases the export in May is higher than the wind power.

Again in June the wind power is sometimes larger than the load.

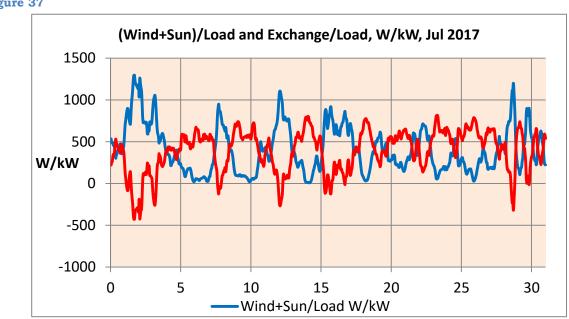
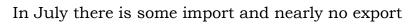
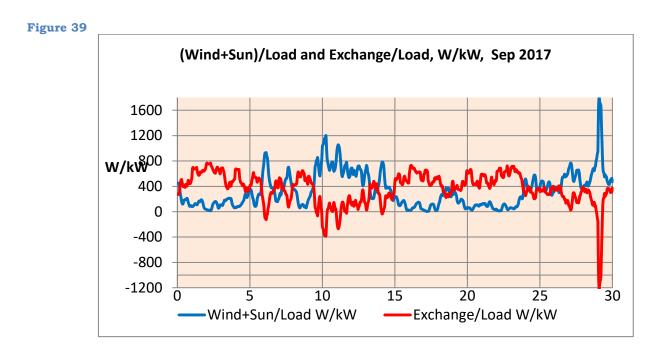
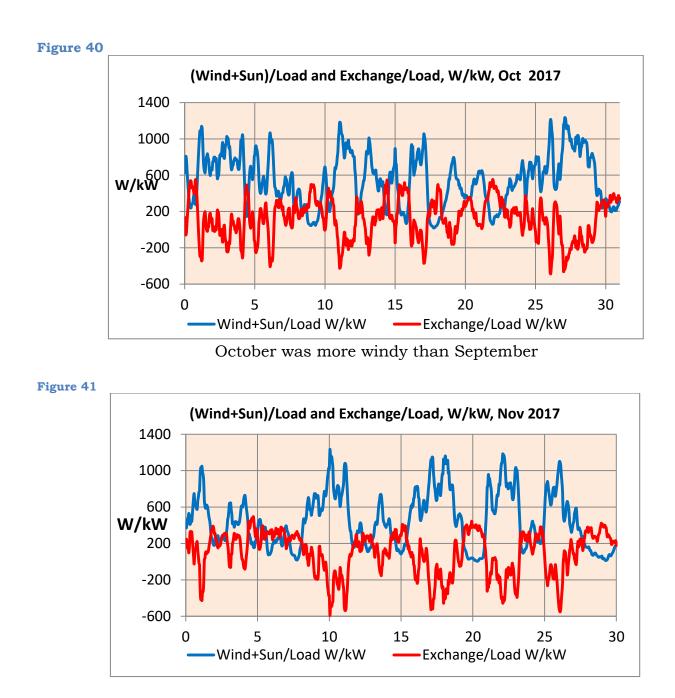
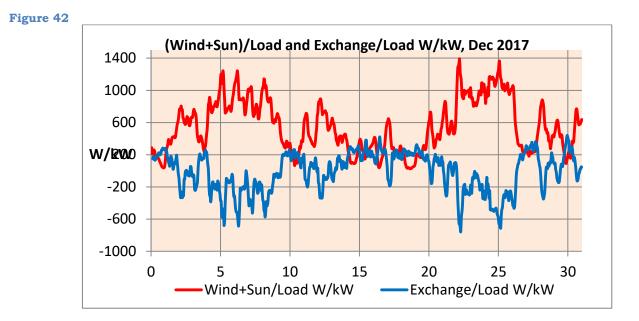




Figure 37




The interdependence between wind and ex/import is very clear

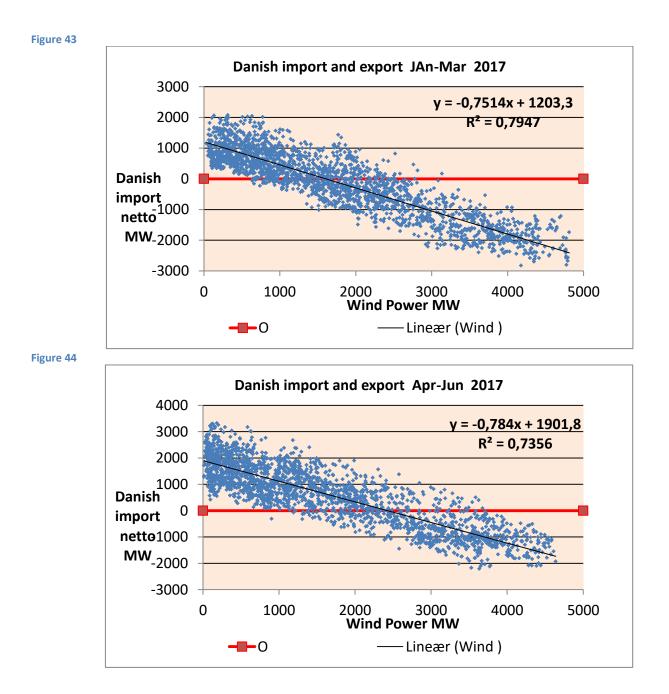
September was a month with a pleasant and not very windy weather.

In November it is colder, and more wind power is exported because the power stations begin to produce again, see Figures 14 and 15 above.

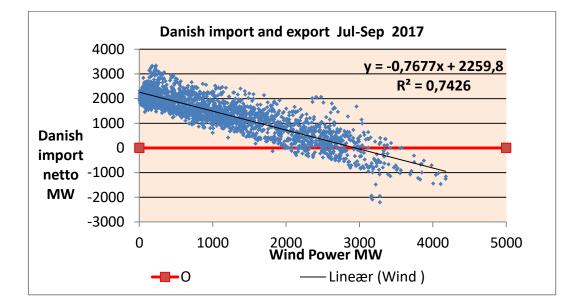
Exchange with Germany and Norway + Sweden.

Tabel 20

The table below illustrates once again how dependent Denmark is of exchange of electricity with the neighbouring countries.


2017	Jan-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec
			Wind MW		
Average	1687	1800	1678	1206	2067
Max	5487	4812	4639	4177	5487
min	3	31	12	3	21
Stddev	1212	1236	1253	953	1219
Observations	8760	2160	2184	2208	2208
Stddev % of average	72	69	75	79	59
		Nett	to Import, l	MW	
Average	523	-149	586	1334	308
Max	3339	2073	3326	3339	2397
Min	-2823	-2823	-2207	-2202	-2466
Stddev	1139	1042	1145	849	958
Observations	8760	2160	2184	2208	2208
Stddev % of average	218	-699	195	64	311
			Load MW		
Average	3887	4234	3628	3540	4150
Max	5982	5905	5081	5786	5982
Min	1810	2784	2359	1810	2553
Stddev	780	764	637	682	777
Observations	8760	2160	2184	2208	2208
Stddev % of average	20	18	18	19	19

The mathematically oriented reader will observe, that the standard deviations as per cent of the averages are very different from the wind power, the import and the load, i.e. 72%, 218% and 20% for the whole year, and conclude that with a wind power with that high variation a considerable im- and export must be a necessity.


Sören Kjärsgård February 2017

There is per se nothing wrong with that, as long as our neighbours accept it and the export prices in DK/MWh are comparable with import prices. The author has not been able to find relevant data for the prices per MWh, but assumes that an imported MWh costs considerably more than an exported MWh.

The import/export for every hour is shown in the following graphs. It is observed, that we import electricity when the wind does not blow and vice versa.

Figure 45

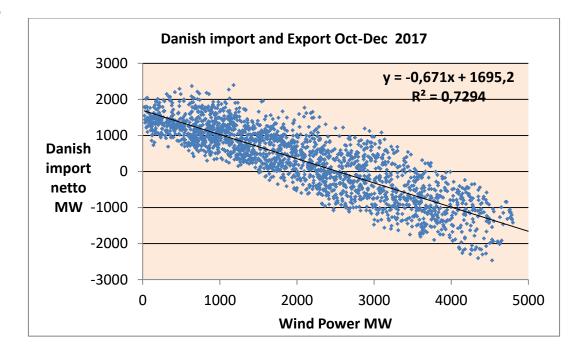
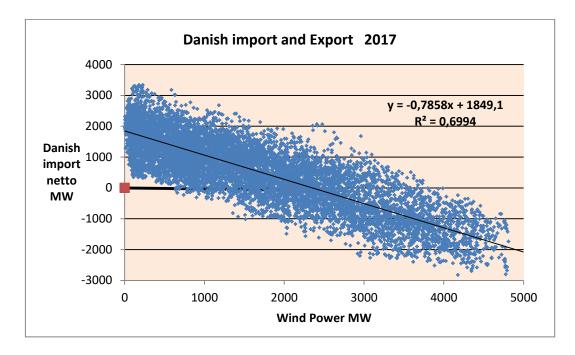



Figure 47

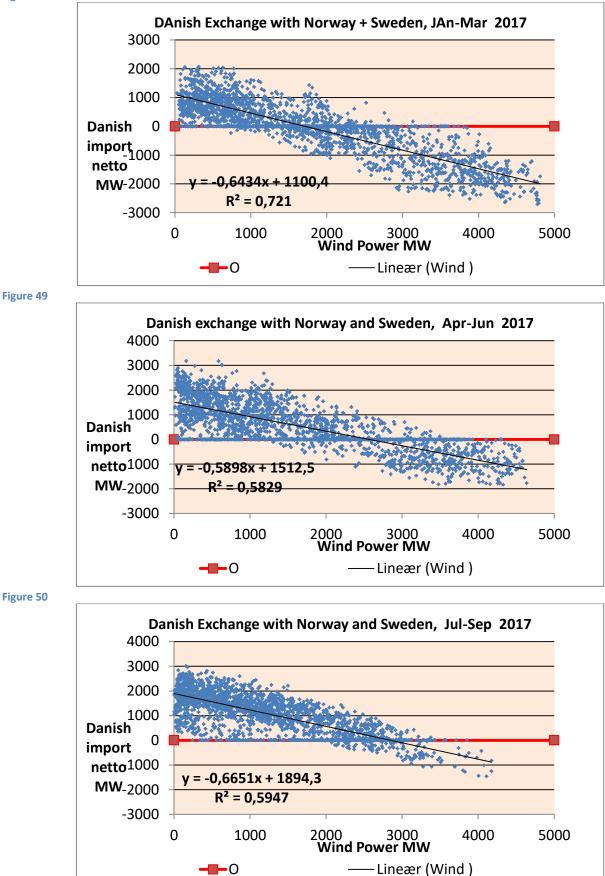
The German wind power is about 3,5 times the Danish, and the German electricity consumption is about 14 times the Danish consumption.

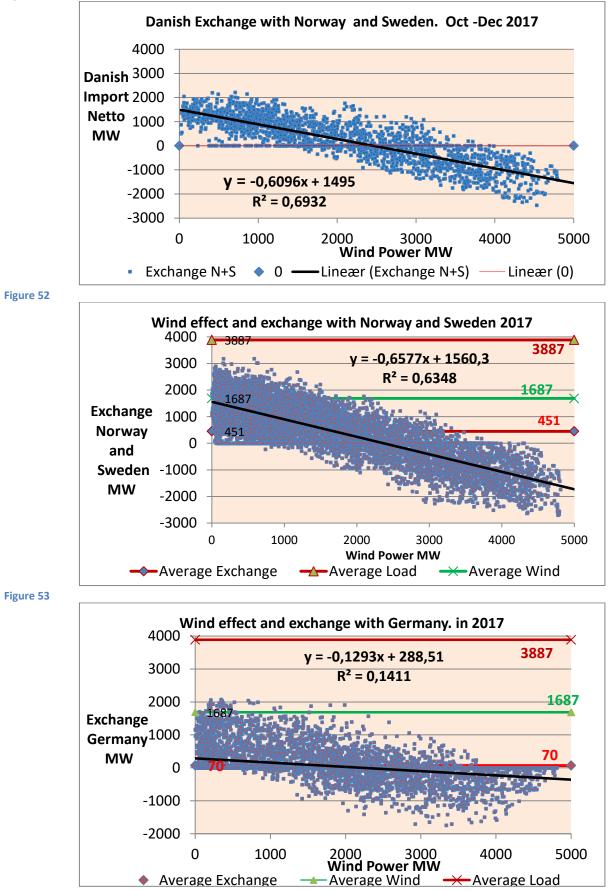
The Danish wind power in 2017 is ca. 44 % of the load. The corresponding German figure for 2016 was 16%.

The author assumes that Germany would come into deep trouble if the German wind power was expanded to the same level as the Danish.

Exchange with Germany and (Norway +Sweden)

2017	Jan-Dec	Jan- Mar	Apr-Jun	Jul-Sep	Oct-Dec
	Excha	ange with	Norway ar	nd Sweden	, MW
Average	451	-66	523	1092	235
Max	3180	2073	3180	3007	2213
min	-2706	-2706	-1834	-1466	-2466
Stddev	1001	976	968	822	893
Observ	8760	2160	2184	2208	2208
Stddev% of	222	-1474	185	75	380
average					
		Exchange	with Gern	nany, MW	
Average	70	-96	63	233	73
Max	2076	1506	2076	1991	1873
min	-1747	-1747	-1572	-1029	-1149
Stddev	417	286	497	437	303
Observ	8760	2160	2184	2208	2208
Stddev% of average	593	-300	785	188	414


Tabel 21


It is easily seen that the exchange with Norway and Sweden is much larger than the exchange with Germany.

The conclusion is evident: Neighbouring Countries with a large wind power production can't assist each other against the problems arising from the varying wind power.

It will be shown later, that the Danish wind power works well together with the Scandinavian hydro power, but only as long as we do not have to compete with Germany and other countries about this back up resource, and as long as Sweden keeps her nuclear power stations operating.

There is a very weak correlation between Danish wind power and the exchange with Germany, for the simple reason that when the wind blows in Denmark it blows in Germany too, and vice versa.

The Graphs show very clearly that we import electricity from Norway and Sweden when there is no or little wind power and export when the wind is blowing. So it is a relevant question if it is reasonable to expand the wind power capacity. Swedes and Norwegians have no reason what so ever to pay very much for the Danish wind power.

Regression equations:

Y = Exchange, MW X = Wind Power, MW

Norway and Sweden 2017

Y = -0,658 - 1560

Germany 2017

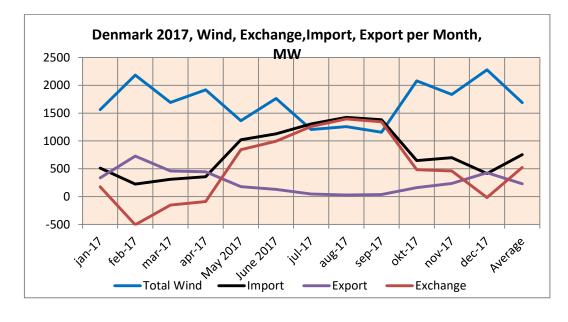
Y = -0,129X + 288

Wind Power and Exchange

The following graphs and tables show the Wind Power, Exchange, Import and Export in MW for the months January to November 2017.

It is seen that the Danish Wind Power is unthinkable without the sometimes very considerable exchange with our neighbours. Sometimes we import a very high proportion of the load and sometimes we export. The "exchange" in these tables equals (import –export).

Tabel 22

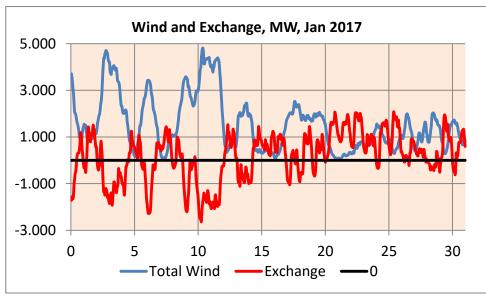

Denmark, 2017, Total Wind and Export and Import, Average MW per period					
	Total Wind	Exchange	Import	Export	
jan-17	1561	175	511	336	
feb-17	2183	-506	223	729	
mar-17	1692	-151	310	461	
apr-17	1917	-90	357	447	
may-17	1364	843	1022	180	
jun-17	1765	997	1127	130	
jul-17	1204	1261	1307	46	
aug-17	1257	1395	1425	29	
sep-17	1156	1345	1382	37	
okt-17	2079	485	647	163	
nov-17	1836	461	698	237	
dec-17	2278	-16	415	430	
Average	1687	525	755	230	
Max	2278	1395	1425	729	
Min	1156	-506	223	29	

The Max and Min values are to be understood as max or min monthly average. Thus on average the wind power in January was 1561 MW and in February 2183 MW. So we are very dependent on Scandinavian Hydro Power,

We exported power in the months February, March, April and December and imported in the rest of the time.

Figure 54

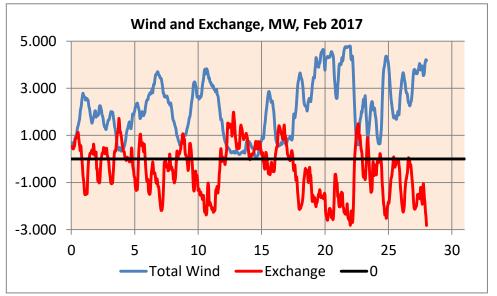
Tabel 23



It is clearly seen, that the main part of the import takes place in the summer months. When it is cold we must start our power plants to cover the need for district heating, And Norway and Sweden need more electricity for heating.

You can't count on higher wind power in the cold months. In January the average wind power was 1561 MW and in June 1765 MW.

Denmark can only hope that the Sweden keeps her nuclear power. If Sweden exchanges nuclear power for wind the hydro power must fluctuate opposite to the wind power, and there would hardly be anything left for Denmark.


jan-17	Total Wind	Exchange	Import	Export
Average MW	1561	175	511	336
Max MW	4812	2073	2073	2638
Min MW	71	-2638	0	0
Stddev Mw	1169	1013	570	598

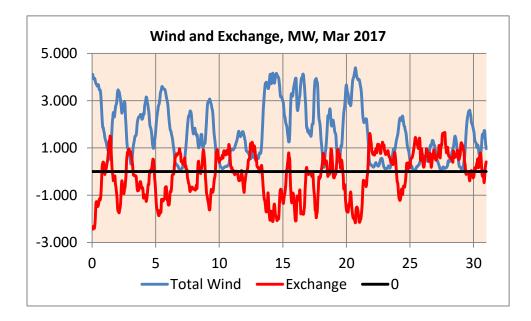
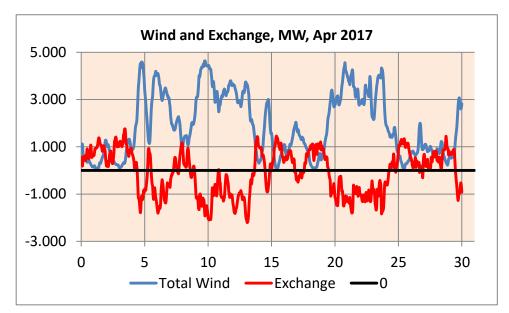

feb-17	Vind	Exchange	Import	Export
Average	2183	-506	223	729
Max	4795	1989	1989	2823
Min	84	-2823	0	0
Stddev	1256	1076	398	820

Figure 56


Tabel 24

mar-17	Vind	Exchange	Import	Export
Average	1692	-151	310	461
Max	4392	1646	1646	2444
Min	31	-2444	0	0
Stddev	1203	929	407	641

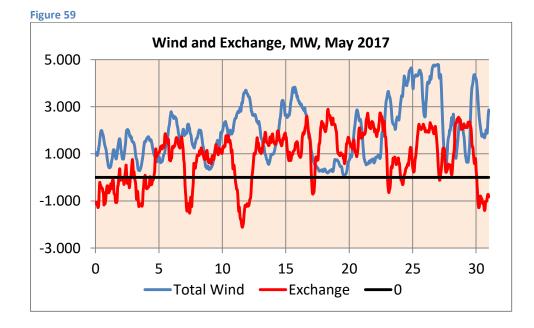
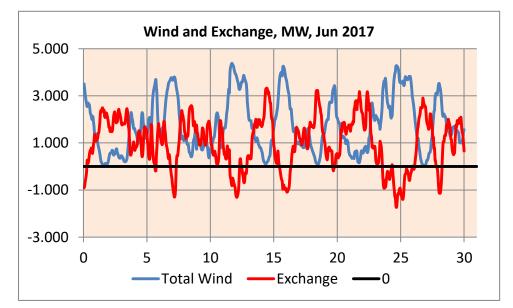
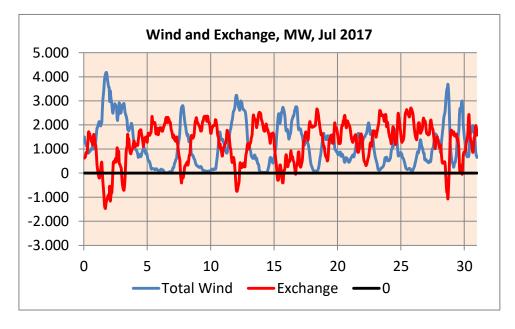

April 2017	Vind	Exchange	Import	Export
Average	1917	-90	357	447
Max	4639	1754	1754	2207
Min	56	-2207	0	0
Stddev	1341	926	436	590

Figure 58

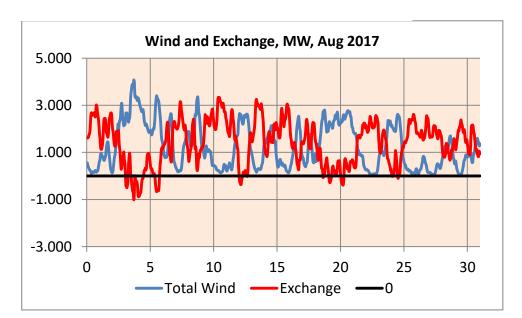

Tabel 26

May 2017	Vind	Exchange	Import	Export
Average	1364	843	1022	180
Max	4545	2894	2894	2119
Min	12	-2119	0	0
Stddev	1177	1096	822	397

Vind	Exchange	Import	Export
1765	997	1127	130
4383	3326	3326	1740
27	-1740	0	0
1172	1092	890	323
	1765 4383 27	1765 997 4383 3326 27 -1740	1765 997 1127 4383 3326 3326 27 -1740 0


Figure 60

Tabel 28


July 2017	Vind	Exchange	Import	Export
Average	1204	1261	1307	46
Max	4177	2707	2707	1466
Min	4	-1466	0	0
Stddev	918	830	731	188

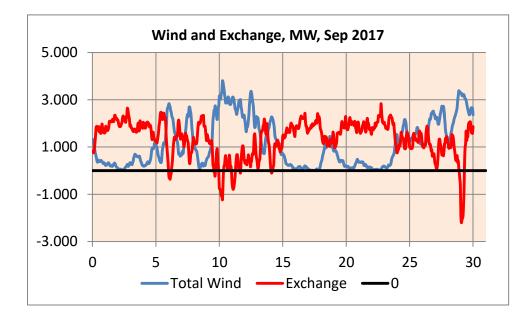
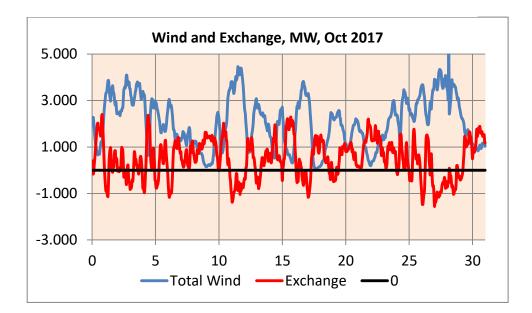
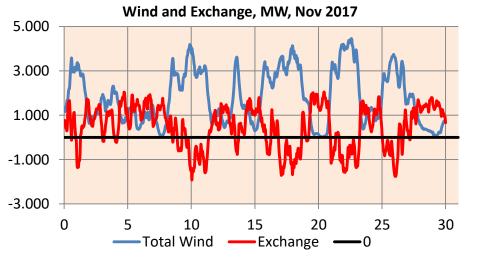

August 2017	Vind	Exchange	Import	Export
Average	1257	1395	1425	29
Max	4076	3339	3339	1014
Min	50	-1014	0	0
Stddev	938	932	877	123

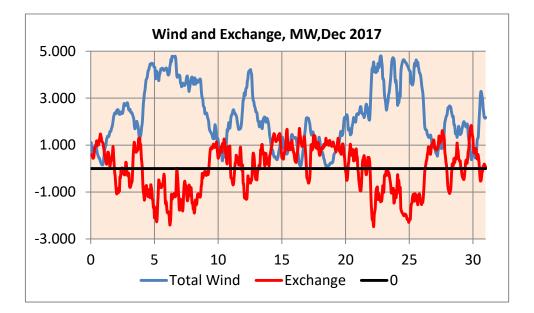
Figure 62


Tabel 30

sep-17	Vind	Exchange	Import	Export
Average	1156	1345	1382	37
Max	3801	2835	2835	2202
Min	3	-2202	0	0
Stddev	1001	771	668	214

October 2017	Vind	Exchange	Import	Export
Average	2079	485	647	163
Max	5487	2397	2397	1553
Min	58	-1553	0	0
Stddev	1097	839	624	322


Figure 64


Tabel 32

November 2017	Wind	Exchange	Import	Export	
Average	1836	461	698	237	
Max	4460	2044	2044	1926	
Min	21	-1926	0	0	
Stddev	1209	962	631	443	

December 2017	Vind	Exchange	Import	Export
Average	2278	17	2295	1984
Max	4800	313	4800	4161
Min	104	0	128	610
Stddev	1304	43	1300	660

Wind and Sun Power Variation per Hour, Day, Week and Month

Tabel 34

Average, M	Average, Max and Min, Wind, Sun and (wind + Sun) power. Denmark 2017.									
		Per Hour			Per Day					
	Wind	Sun	Wind+sun	Wind	Sun	Wind+sun				
Average MW	1687	90	1777	1687	90	1777				
Max MW	5487	673	5487	4419	247	4492				
Min MW	3,5	0	11	54	3,5	188				
Stddev MW	1212	145	1214	1075	65	1062				
Max/Min	1568	~	503	82	71	24				
		Per Week		Per month						
Average MW	1687	90	1777	1687	90	1777				
Max MW	3403	213	3425	2306	164	2323				
Min MW	315	8,4	443	1159	17	1265				
Stddev MW	625	56	608	405	55	375				
Max/Min	11	26	7,7	2,0	9,8	1,8				

It is well known that wind and sun varies from hour to hour and from day to day. It may be less realized that there are significant variations over longer periods.

For instance the wind power per hour varies with a factor 1568, the daily average varies with a factor 82, (between 4419 and 54 MW), the weekly average with a factor 11 (between 315 and 3403 MW) and the monthly average with a factor 2,0 (between 1159 and 2306 MW)

For instance wind + sun yielded 334 GWh in week 3+4 and 948 GWh in week 8+9. The difference is 612 GWh. This corresponds to 6000 of Elon Musk's much praised battery in Southern Australia and a cost of 300 billion US\$! Or about 55000 US\$ per capita.

334 GWh/2weeks corresponds to 994 MW and 948 GWh in to weeks to 2821 MW. Denmark's total (total not only electricity) effect consumption in 2016 was 25.200 MW. The total electricity consumption is a little less than 4 GW.

So it may be concluded, that a fossil free society based on wind power is a distant dream.

Figure 67

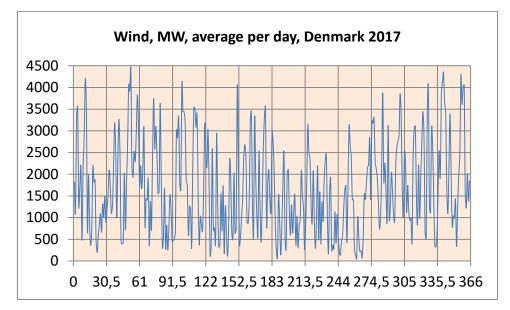
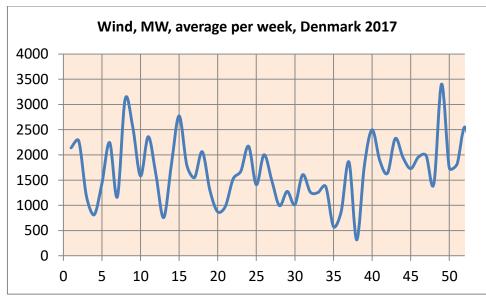
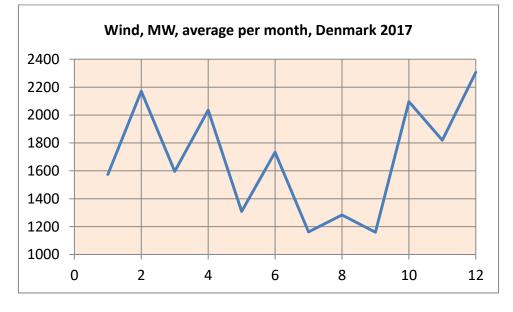




Figure 68

Figure 70

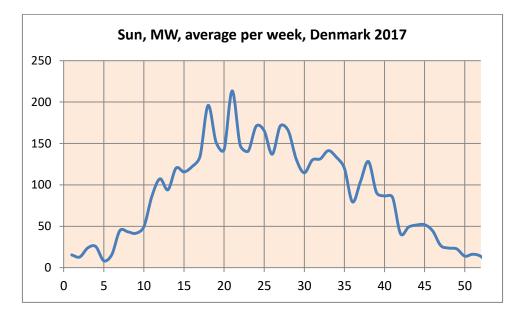
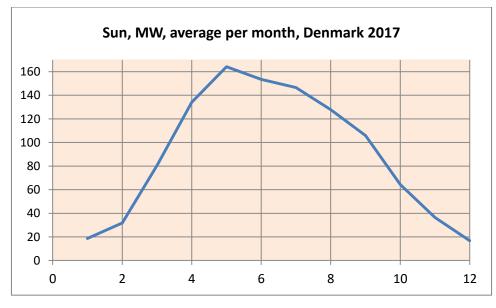
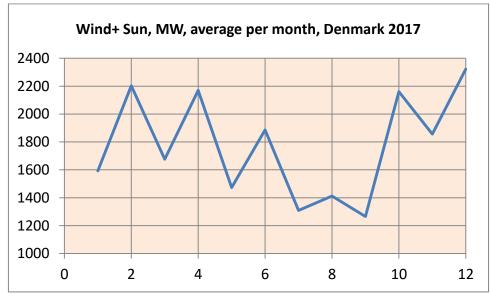
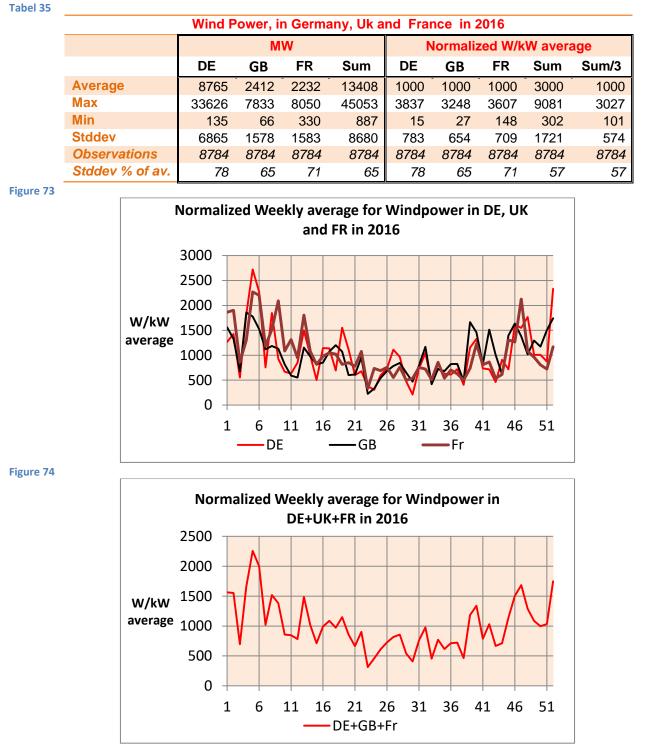




Figure 71



It is interesting to compare the Danish curve showing averages per week with the corresponding curve for Germany + United Kingdom +France.

Sören Kjärsgård February 2017

However, the German system is much larger than the British and the French, so a direct comparison does not make sense. But if you divide the single figures for the wind effect with the yearly average and multiply by 1000 you get the value W/kW average production, and then you can compare.

It should be very easy to see, that it is not true, that "it always blows somewhere". This is illustrated by the following considerations concerning a cable between Denmark and England.

Storage of Wind energy

When we wish to calculate the magnitude of a storage for the fluctuating wind energy, it is necessary to choose the conditions for this calculation.

We have chosen a model where the output from the wind power+storage is kept constant. Not very realistic of course. As long as we have other options for producing electricitythe building of large storages is definitely not preferable. Nevertheless the matter is frequently discussed, so it gives meaning to try to create an idea of the magnitude of the task.

The calculations are performed under the following condition:

- 1. When the wind power is higher than the yearly average times a constant **F** the wind energy above this level is brought to the storage.
- 2. When the wind power is lower than the yearly average times the constant \mathbf{F} the storage delivers electricity back to the system.
- 3. The constant **F** depends of the loss by storing and recovering. If there was no loss the Constant would have the value **1**.
- 4. The contents of the storage at start shall equal tee storage at the end.
- 5. The contents of the storage has a minimum of 0.

Given these conditions the excel program calculates \mathbf{F} , the storage contents at any time and the input to and the output from the storage.

The results are shown in the table 35 and 36 below.

Wind Denma	mark 2017 To Reserve				From Reservoir Power		Reservoir content GWh
	MW	MW	MW	MW	MW	MW	GWh
Average	1687	536	509	509	484	1635	807
Max	5487	3852	3659	1718	1632	1635	1409
Min	4	0	0	0	0	1635	0
Stddev	1212	797	757	592	562	0	372
Observations	8760	8760	8760	8760	8760	8760	8760

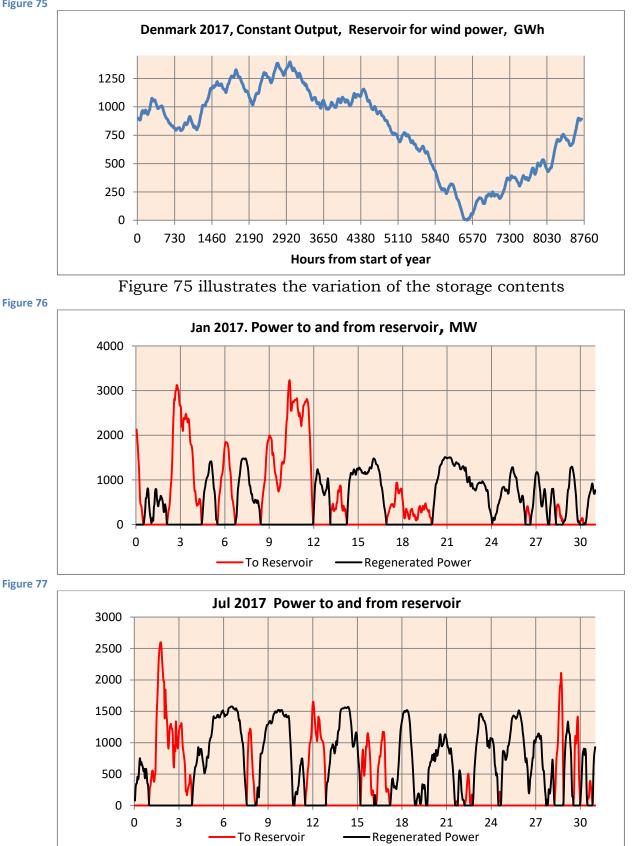
Tabel 36

On average 536 MW are transferred to the storage. The variation is considerable, between 0 and 3852 MW. It must be added, that the loss by limiting the transfer capacity are so small that this capacity can be reduced.

The variation in the transfer from the storage varying between 0 and 1718 MW is much lower.

Loss by storing		50		
Loss by reproduction	Wh/kWh	50		
Loss totally	input	97,5		
Storage Efficiency		902,5		
	MW	52		
Loss	%	3,1		
	GWh/year	455		
Storage capacity	Future reservoir	Vianden in Luxem-		
Storage capacity		bourg		
GWh	1409	5		
hrs of average production	835	3,0		
Max input MW	3852	1040		
Max Output MW	1632	1290		
Condition 1: To reservoir - From	reservoir =	0		
Condition 2: Minimum storage	content =	0		
Calculated factor		0,9692		
Storage Start of Period	GWh	899		

Tabel 37 shows that the calculated loss is 455 GWh/year. By an electricity price of $100 \notin$ /MWh this amounts to 45,5 Mio \notin /year. A loss of 19 % is more realistic and results in a loss of 934 GWh/year corresponding to 93,4 Mio \notin /year.


A lower efficiency gives a lower total output, but it will not require a larger storage. Some say that it would be cheaper to build more wind turbines than to establish a storage. That is true.But as in seen from table 36 showing the Danish Wind power in 2017 this could impossibly solve any problem since even an unlimited amount of wind turbines would not guaranty a power supply sometimes being approximately zero.

We would need a storage capacity of about 1400 GWh corresponding to 4% of the Swedish hydro system. This storage could surely not be found in Denmark.

And a capacity of 280 times Vianden in Luxemburg, the largest pumped storage system in Europe.

Some may wonder that the loss is only 3 % of the produced wind power. That is because only a part of the produced wind power is stored.

The figures 76 and 77 show that the size of the storage is not the only problem. The demands to the input and output capacities are considerable too.

Comparison with Elon Musk Battery South Australia									
Denmark 2017 Estimated loss by storing 19%		Battery South Australia	Danish Demand	Times Elon Musk					
Capacity	MW	100	1.577	16					
Capacity	MWh	129	1.396.412	10.825					
Price	Mio US\$	50	541.245						
THEE	Mio €	40	434.305						

Tabel 38 shows the relation between capacity and cost for Elon Musk's battery delivered to South Australis. A Danish storage system would need only 16 times more effect capacity, 1577 MW against 100 MW in South Australia. But the needed storage capacity would be 10825 times larger than the Australian battery to ensure a stable electricity supply. Roughly 100000 US\$ per capita.

And then it must be remembered that the wind power represented only 7% of the Danish effect or energy demand.

The conclusion is that it is nonsense to talk about storing of wind energy.

Some talk about an electrochemical storage by using the power to produce hydrogen, which thereafter should react with carbon dioxide to produce methanol. Every skilled chemical engineer will know that this I nonsense too.

We have seen phantasies about building an island at the Dogger Bank in the North Sea and then build the production facilities for production of Methanol by means of "cheap and plentiful wind power" used to produce hydrogen at that location.

This hydrogen should then react with carbon dioxide to form methanol.

It is a relevant question question:

"Where should the carbon dioxide come from."

It is well known how to extract it from the smoke from a power station. Alas it is well known too, that this process is very energy demanding, expensive to operate and capital demanding. Not to speak of a pipe for transporting carbon dioxide from onshore coal fired power stations.

And in no way compatible with a **fossil free society!**

Tabel 38

North Sea Cable.

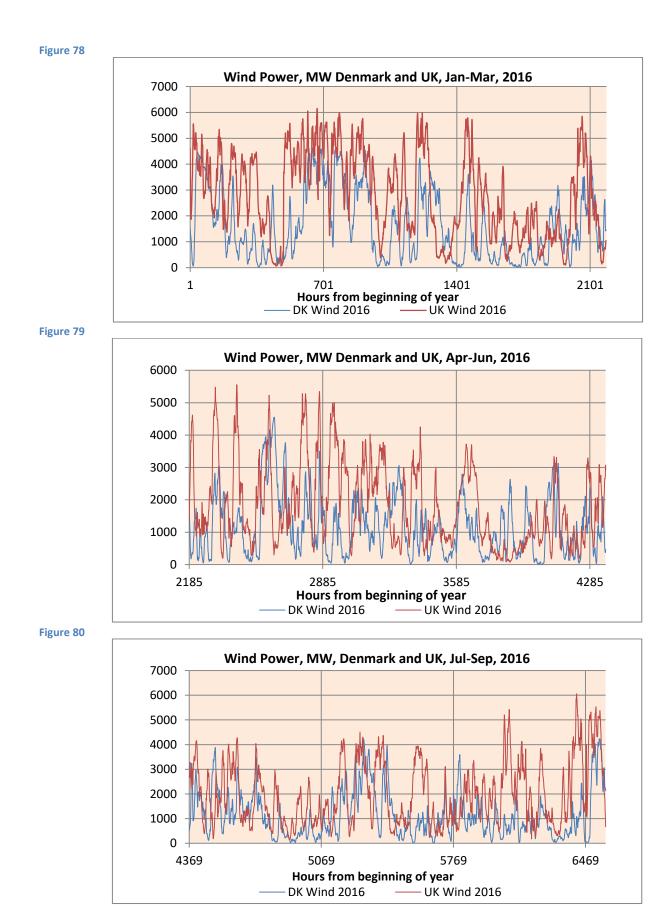
On October 30, 2017 the Danish Periodical **Energy Supply** described a plan for a cable between England and Denmark with the following data:

Capacity : Length: Price: corresponding to Economy: Revenue over 40 years	1400 750 11 1,47 4,7	MW km Billion DKK Billion €. Billion DKK
The authors calculations:		
Investment	11000	mio DK
Pay back time	30	years
Interest	3%	per year
Cost per Year	561	mio DKK
Assumed average load	150	MW
Exchange per year	1314	GWh
Capital cost per MWh	427	DKK/Mwh
Capital cost per MWh exchange		
At full capacity	48	DKK/MWh

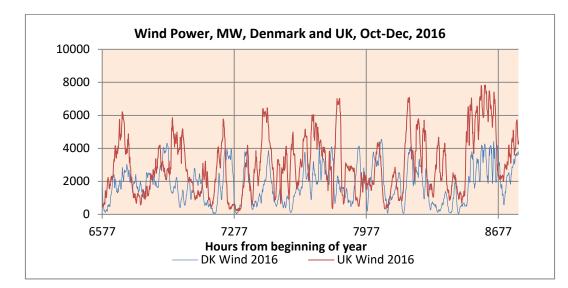
Conclusion

The system price for electricity in the Nordic countries was 200-220 DKK/MWh in 2017. So the project can't even be justified by the building of new off shore parks whose production has no market in Denmark. The politicians have given a license for 1350 MW of new off shore wind parks with an estimated average output of max 700 MW.

It is not explained why Denmark should build off shore wind parks to supply the British with wind power.


We have tried to quantify the benefits looking at the wind power data from England and Denmark in 2016, (Source: <u>www.PFBach</u> International Time Series) 2016).

We assume that export of electricity can be interesting when the wind power output is larger than a certain constant times the yearly wind power average, and that the import may be interesting when the wind power is less than this constant times the yearly average.


This is surely not a precise description of a future reality, but it may help an interested public to ask our politicians if they use our money in a sensible way.

The idea is the very undocumented assumption that the wind comes 24 hours later to Denmark than to the United Kingdom, and that we therefore will be able to support each other with wind power.

So let us look at the wind power graphs for Denmark and UK. The curves do not follow each other exactly, but they show too that you can't say that it blows in the UK when it does not in Denmark and vice versa.

				Year 20)16				
		Wind		Export potential		Import potential		Possible Exchange	
		DK	UK	DK	UK	DK	UK	DK to UK	UK to DK
Average	MW	1454	2412	229	256	956	1462	77	62
Max	MW	4662	7833	2482	4216	2180	3551	2369	1941
Min	MW	1	66	0	0	0	0	0	0
Stddev	MW	1133	1578	516	615	761	1168	268	216
Stddev	W/kW Avr.	779	654	2253	2400	796	799	3490	3458
	Hours	8784	8784	2164	2101	6620	6683	1131	1068
Factor		1,50	1,50						
Wind Power limit for im/export MW		2181	3617						

The figures 78-81show the wind effect in Denmark and UK in 2016. On average they were 1454 MW in Denmark and 2412 MW in the UK.

In Denmark the effect varied between 1 and 4662MW and in UK between 66 and 7833 MW.

The standard deviations are 779 W/kW average wind in Denmark and 654 W/kW in UK and indicate that the wind power in UK is a little more stable than in Denmark. This is no wonder since the wind turbines are spread over much larger distances in UK than in Denmark.

In the second last line we find the chosen **"Factor" 1,5** indicating that **export** from either Denmark or UK may be interesting when the wind power is higher than 1,5 times the yearly average respectively **2181** MW in Denmark and **3617** MW in the UK. **Import** may be interesting when the wind power in Denmark is less than **2181** MW and in England less than **3617** MW.

We then find that export might be interesting for Denmark in **2164** hours per year and for UK in **2101** hours per year. And import in respectively **6620** and **6683** hours per year.

Alas no exchange can be made unless both countries see an interest in this. So export from Denmark to the UK might be possible in **1131** hrs per year and from UK to Denmark in **1068** hrs per year.

The average export from Denmark would amount to 77 MW and from UK to 62 MW, in total 139 MW.

This is 10 % of the capacity of the proposed cable!

So to justify the project it will be necessary to build new wind parks. The financing should be no problem. The tax payer and electricity consumers will have to pay the bill.

Tabel 40

Calculated Exchange, MW average, per month 2016 and 2017									
	DK to UK	UK to DK	DK to UK	UK to DK					
	20	16	20	17					
Jan	66	148	46	61					
Feb	89	87	194	151					
Mar	45	53	114	86					
Apr	156	67	301	52					
May	31	42	105	18					
Jun	31	0	193	33					
Jul	49	2	52 37	4 6					
Aug	111	20							
Sep	10	111	23	68					
Oct	140	82	71	185					
Nov	142	72	83	316					
Dec	54	67	42	190					
Average	77	62	104	97					
Sum DK +UK		139		201					
Wind	DK	UK	DK	UK					
average MW	1454	2412	1687	3689					

Table 40 shows the calculated monthly averages in MW for the exchange of electricity between Denmark and the UK in 2016 and 2017.

Provided that export may be interesting when the wind power in each of the two countries is higher than 1,5 times the annual average, and import may be interesting when the wind power is less 1,5 times the average.

Due to the hi8gher wind power output in 2017 than in 2018 the calculated exchange for 2017 is higher than for 2016. But sill a very long way from 1400 MW.

Other factors than 1,5 might be chosen. Table 41 shows the resultsfor 2016 with varying factors.

Sum of exchange, MW average in 2016, between Denmark and UK									
		Factor Danmark							
		1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
	1,2	181	179	180	183	187	192	200	207
	1,3	176	171	167	165	166	168	172	177
	1,4	174	164	156	151	148	147	149	152
Factor	1,5	173	159	148	139	134	131	130	131
UK	1,6	173	156	142	132	124	119	116	114
	1,7	178	159	143	130	120	112	106	102
	1,8	186	165	147	131	119	108	100	94
	1,9	198	175	154	136	121	108	98	89

Tabel 41

The maximal obtained figure is 207 MW exchange on average in a cable with a capacity of 1400 MW.

It must be added that the wind power was higher in 2017 than in 2016. In UK much higher.

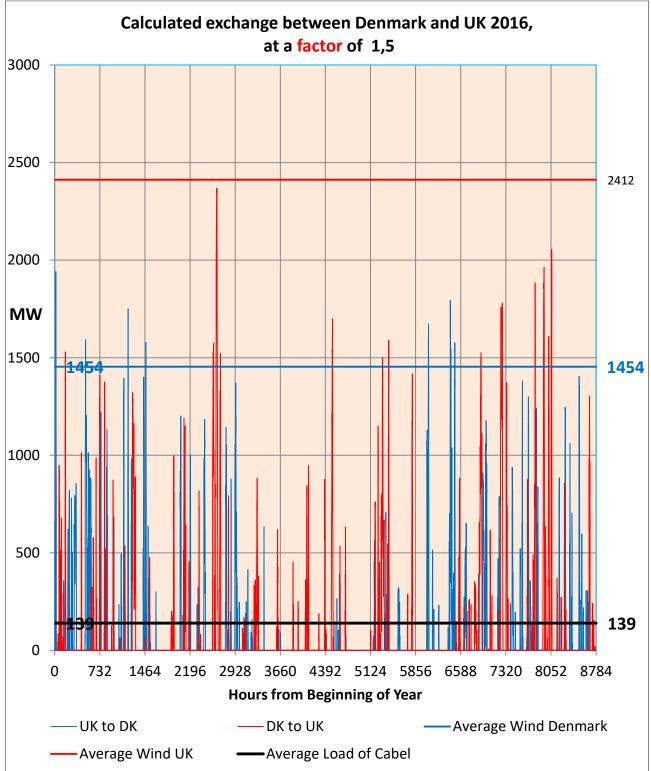


Figure 82 shows the intermittent load of the proposed cable under the chosen conditions. It should be observed that the cable is dimensioned for a load of 1400 MW, and that the calculated average load is as low as 139 MW.

When Sweden Rejects Nuclear Power^{iv}

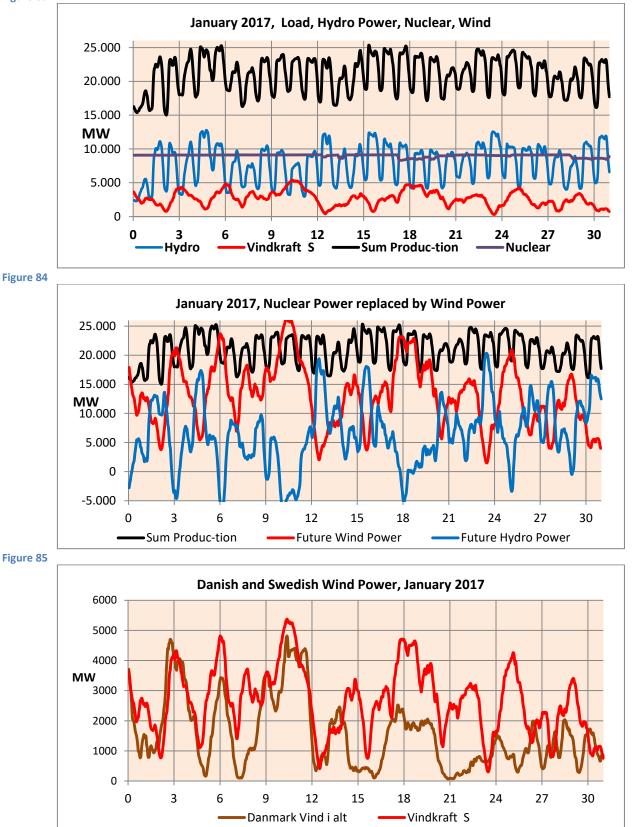
We have seen that the Danish Electricity supply is deeply dependent of cooperation with Norway and Sweden.

The Swedish production of electricity is shown as MW average for the mentioned periods in table 42. Table 42

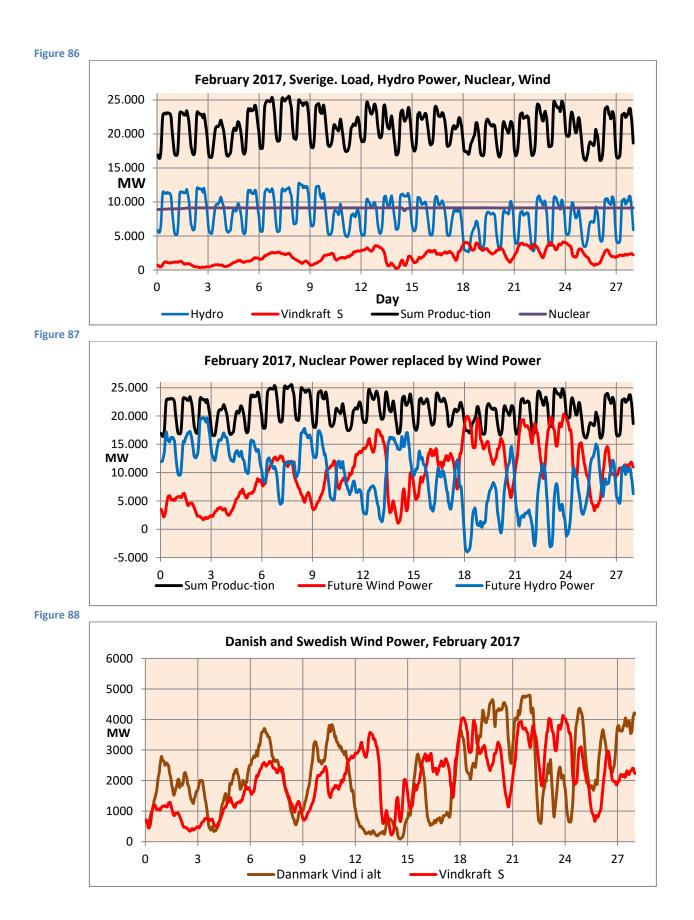
Swedish electricity production 2017. MW	Gastur- bine Diesel	Nuclear	Other thermal	Other	Sun	Hydro	Wind	Sum			
		The year 2017									
Average	1	7.202	634	0	8	5.579	1.836	15.260			
Max	162	9.141	2.026	42	86	12.769	5.524	25.561			
Min MW	0	3.097	8	0	0	779	34	5.667			
Stddev	4	1.771	543	1	15	2.571	1.165	4.290			
Observations				8.760							
			Ja	anuar – N	Iarch						
Average	2	8.975	1.442	1	3	7.832	2.347	20.602			
Max	78	9.141	2.026	20	59	12.769	5.524	25.561			
Min MW	0	7.882	946	0	0	2.268	177	14.055			
Stddev	5	333	178	2	8	2.539	1.134	2.582			
Observations				2.160							
				April – J	une						
Average	1	7.462	727	0	16	6.240	1.767	16.212			
Max	59	9.007	1.383	42	81	10.605	5.221	23.464			
Min MW	0	5.451	284	0	0	2.099	116	10.305			
Stddev	4	1.091	294	2	21	1.888	1.061	2.471			
Observations				2.184							
			Ju	ly – Septe	ember						
Average	1	5.017	214	0	11	4.989	1.197	11.428			
Max	53	6.701	460	3	86	10.418	3.593	17.401			
Min MW	0	3.097	83	0	0	896	56	5.667			
Stddev	3	940	91	0	17	2.054	725	2.736			
Observations				2.208							
			Oct	ober - De	cember						
Average	1	7.395	173	0	1	3.313	2.043	12.926			
Max	162	8.644	529	1	22	5.853	5.417	18.440			
Min MW	0	3.802	8	0	0	779	34	7.550			
Stddev	5	1.525	90	0	3	1.135	1.331	2.006			
Observations				2.208							

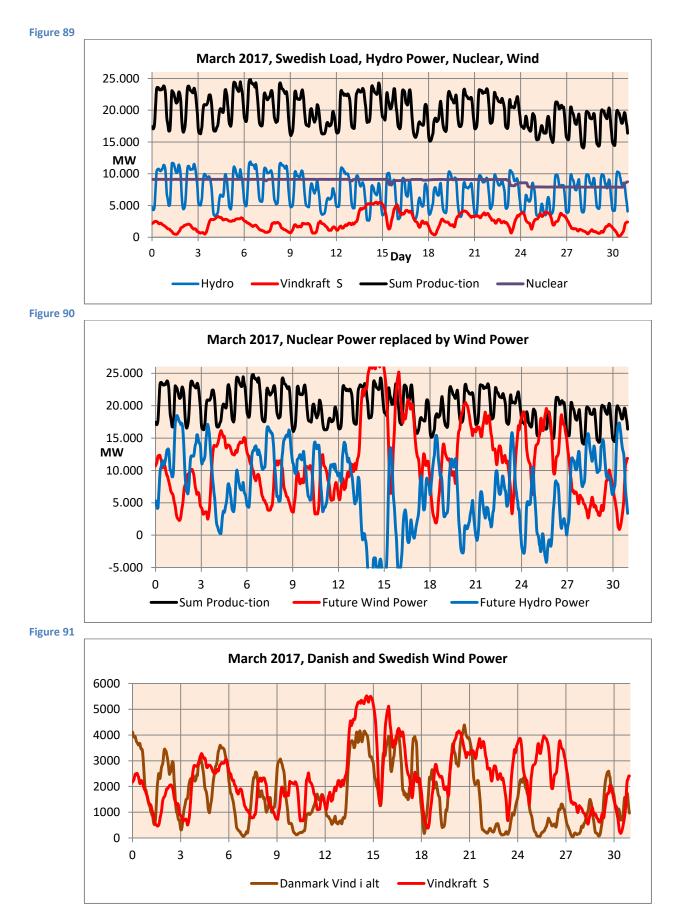
Electricity Production, Sweden. January to March 2017, MW											
			Other								
	Gastur- bine Diesel	Nucle- ar	Ther- mal Produc	Hydro	Wind Swe- den	Sum Produc -tion	Future Wind Power	Future Hydro Power	Den- mark WInd		
			tion								
			J	anuary 2	017						
Average	2	9.005	1.472	7.912	2.665	21.057	13.119	6.463	1.563		
Max MW	78	9.131	2.026	12.769	5.375	25.342	26.459	20.329	4.812		
Min MW	0	8.317	1.076	2.268	303	15.018	1.493	-7.691	71		
Stddev MW	5	204	143	2.622	1.110	2.566	5.462	5.668	1.169		
Observations					744						
			F	ebruary 2	017						
Middel MW	2	9.113	1.535	8.224	2.039	20.917	10.038	9.338	2.183		
Maks MW	66	9.141	1.900	12.767	4.131	25.561	20.336	19.707	4.795		
Min MW	0	8.736	1.299	2.642	218	16.086	1.072	-4.005	84		
Stdafv MW	6	47	144	2.509	1.000	2.468	4.920	5.241	1.256		
Observations					672						
				March 20	17						
Middel MW	2	8.821	1.328	7.398	2.307	19.862	11.358	7.168	1.692		
Maks MW	58	9.129	1.896	11.889	5.524	24.813	27.192	18.488	4.392		
Min MW	0	7.882	946	2.648	177	14.055	873	-9.001	31		
Stdafv MW	5	487	176	2.415	1.190	2.539	5.859	5.838	1.203		
Observations					744						

By observing table 43 above it will be seen that the standard deviation for the **nuclear power** in the months January, February and March is 204, 47 and 487 MW or **2,3 and 0,5 and 5.5** % of the average production.


For the **wind power** the corresponding figures are **41 and 49 and 52%**, and the wind power output varied between 5524 MW and 177 MW.

Nuclear power is reliable. Wind power absolutely not.


Sweden is expanding the wind power, and for many influential persons the goal is to abandon nuclear power completely and replace it by wind power.


So we have tried to calculate the consequences, assuming that wind power should replace nuclear power, and that the hydro power should yield the necessary regulation of the output and asuming that gas, diesel and other are kept unchanged. In 2017 nuclear power yielded on average 7202 MW and the Wind Power 1836 MW. So in the future Wind Power should yield 9038 MW, which means that the wind power must be increased by a factor of 4,923. The consequences are shown in the columns "Future Wind power" and "Future Hydro power" in the table 43 above, And in the Figures 83-91 below.

You might wonder how the hydropower can be negative. However that means that water should be pumped back to the reservoirs. Possibly this is not necessary. But about 5 TWh/year of windpower would be lost, unless you find a way to use a lot of extra electricity when it blows.

You see from figure 85, 86 and 91 Danish and Swedish wind power to a high degree varies synchronously. So it would be very unpleasant for Denmark if Sweden abandons nuclear power.

71 of 76

Production data per Month.

Energistyrelsen supplies production data for every wind turbine for every month^v.

Ta	hol	11
ıa	DEI	-

	Denmark 2014-2017. Wind Power average per month and year												
Year	Jan	Feb	Mar	Apr	Мај	Jun	Jul	Aug	Sep	Okt	Nov	Dec	Year
2014	2.727	2.098	1.612	1.426	876	884	777	1.367	1.033	1.505	1.688	1.932	1.491
2015	2.107	1.780	1.529	1.485	1.692	1.377	1.443	1.085	1.354	1.259	1.703	2.520	1.611
2016	1.943	1.816	1.097	1.444	1.111	930	1.087	1.371	1.032	1.730	1.870	1.933	1.469
2017	1.541	2.160	1.675	1.897	1.351	1.748	1.193	1.248	1.151	2.076	1.829	2.276	1.675

Table 44 and figure 92 illustrate the necessity of back up. Figure 92

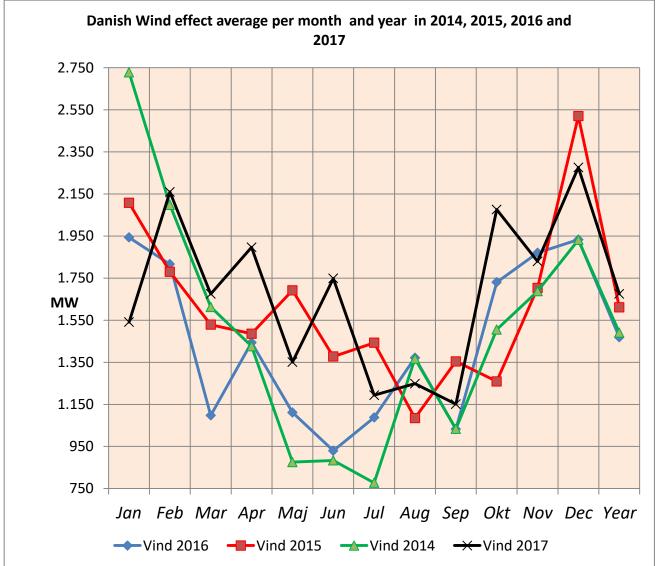
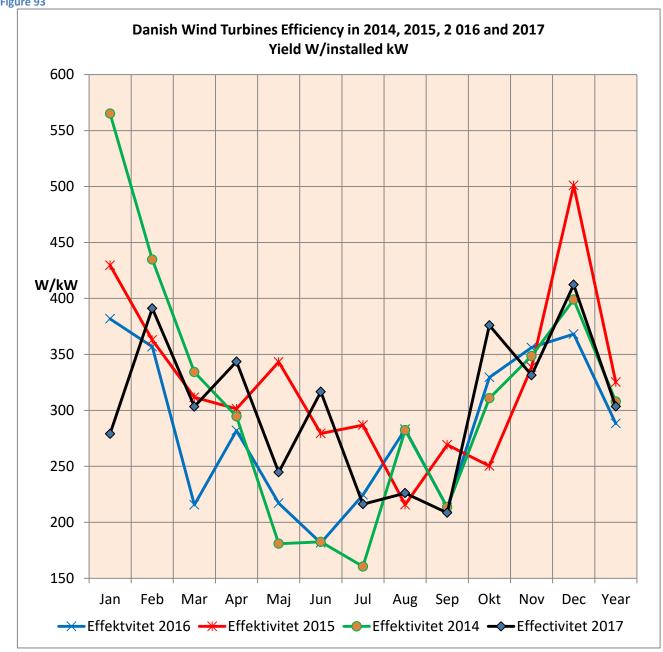
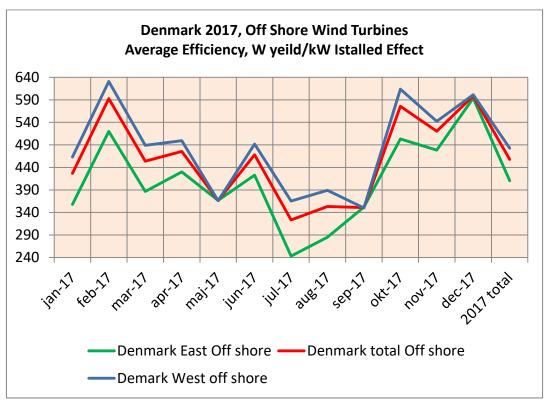



Table 45 and 46 and figure 93 and 94 illustrate the varying output per installed effect. On average the wind turbines yield about 30% of the nominal capacity.


What a waste of steel, concrete, copper, neodym and other materials. The (nominal) 3,6 MW wind turbines in "Norddjurs" weigh: 3 Turbineblades 54 tons, Tower 200 tons (steel), Turbine house 195 tons(Steel copper, neodym etc.) and the basement about 500 tons.

Tabel 4	45												
Danish Wind turbines average efficiency. Yield W per installed kW capacity, 2014-2017.													
Year	Jan	Feb	Mar	Apr	Мај	Jun	Jul	Aug	Sep	Okt	Nov	Dec	Year
2014	565	435	334	295	181	183	161	282	213	311	349	399	308
2015	430	363	312	301	343	279	287	216	269	250	339	501	325
2016	382	357	216	282	217	182	225	283	213	329	356	368	288
2017	279	391	303	344	245	317	216	226	208	376	331	412	303
Figure	93												

Denmark 2017. Efficiency. On and off shore Wind Turbines. W yield/kW installed effect													
	jan	feb	mar	apr	maj	jun	jul	aug	sep	okt	nov	Dec	2017
East Off shore	358	520	387	430	367	423	243	285	352	503	478	594	411
West off shore	463	631	489	499	366	492	365	389	350	614	542	601	482
Total Off shore	427	593	454	475	366	468	323	353	351	576	520	599	458
East On shore	201	293	214	264	203	257	152	184	201	331	296	384	248
West On shore	241	337	267	312	208	273	190	188	157	312	269	349	258
Total On shore	234	330	257	303	208	270	183	187	165	315	274	355	256
Denmar k total	279	391	303	344	279	317	216	226	208	376	331	412	303

Figure 94

The off shore wind turbines are just as unreliable as the onshore turbines but it must be admitted, at a higher level. In 2017 they yielded on average 458 W per installed kW, against 256 W per kW for the on shore turbines.

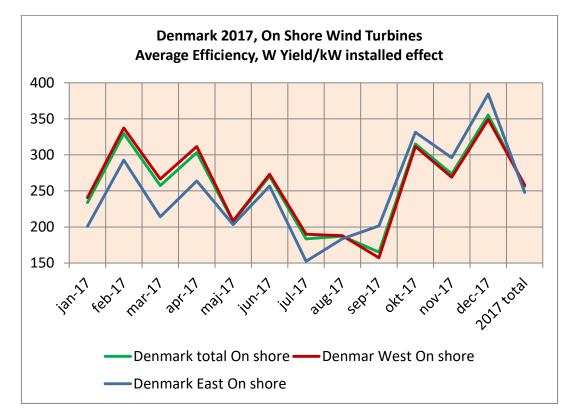


Table 47 below shows the development in installed wind power capacity in the period 2012-2017. The off shore capacity increased by 370 MW and the onshore capacity by 989 MW. Table 47

Denm	Denmark 2012 – 2017, Installed Wind Power Capacity												
	2012	2013	2014	2015	2016	2017	2012-17						
	Installed Capacity MW												
Off Shore	922	1271	1271	1271	1266	1292	370						
On Shore	3240	3799	3634	3799	3985	4229	989						
Total	4162	5070	4906	5070	5251	5521	1359						
	1	Number c	of Turbin	es			Increase						
Off Shore	419	516	519	516	505	508	89						
On Shore	4591	5260	4753	5260	5562	5649	1058						
Total	5010	5776	5272	5776	6067	6157	1147						

Sören Kjärsgaard May 31, 2018.

Sources

ⁱ<u>https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-aarlig-</u> <u>energistatistik</u> Grunddata

ⁱⁱ<u>https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-aarlig-</u> <u>energistatistik</u> Grunddata

iiihttps://esa.un.org/unpd/wpp/Download/Standard/Population/ Total Population - Both Sexes (XLSX, 2.42 MB)

<u>https://mimer.svk.se/ProductionConsumption/ProductionIndex</u>

vhttps://ens.dk/service/statistik-data-noegletal-og-kort/data-oversigt-overenergisektorenData for eksisterende og afmeldte møller